Journal of Experimental and Theoretical Physics
Journal Issues
Golden Pages
About This journal
Aims and Scope
Editorial Board
Manuscript Submission
Guidelines for Authors
Manuscript Status

ZhETF, Vol. 127, No. 6, p. 1282 (June 2005)
(English translation - JETP, Vol. 100, No. 6, p. 1129, June 2005 available online at )

Berry R.S., Smirnov B.M.

Received: January 10, 2005

PACS: 61.20.Gy, 61.25.Bi, 61.43.Fs, 64.70.Dv

DJVU (161.6K) PDF (302.6K)

Formation of the liquid state of clusters with pairwise interactions between atoms is examined within the framework of the void model, in which configurational excitation of atoms results from formation of voids. Void parameters are found from computer simulation by molecular dynamics methods for Lennard - Jones clusters. From that standpoint, phase transitions are analyzed in terms of two aggregate states. This information allows us to divide the entropy jump during a solid-liquid phase transition into two parts: one corresponds to configurational excitation at zero temperature and the other arises from thermal vibrations of atoms. The latter part contributes approximately 40 % for Lennard - Jones clusters consisting of 13 and 55 atoms, increasing to 56 % for bulk inert gases. These magnitudes explain the validity of melting criteria based on thermal motion of atoms, even though the distinctive mechanism of this phase transition results from configurational excitations. It is shown that the void concept allows analyzing various aspects of the liquid state of clusters including the existence of a limiting freezing temperature below which no metastable liquid state exists, and the existence and properties of glassy states that may exist below the freezing limit.

Report problems