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TWO-DIMENSIONAL ANDERSON-HUBBARD MODEL
IN THE DMFT+ X APPROXIMATION
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The density of states, the dynamic (optical) conductivity, and the phase diagram of the paramagnetic two-
dimensional Anderson—Hubbard model with strong correlations and disorder are analyzed within the generalized
dynamical mean field theory (DMFT+X approximation). Strong correlations are accounted by the DMFT, while
disorder is taken into account via the appropriate generalization of the self-consistent theory of localization. We
consider the two-dimensional system with the rectangular “bare” density of states (DOS). The DMFT effec-
tive single-impurity problem is solved by numerical renormalization group (NRG). The “correlated metal’, Mott
insulator, and correlated Anderson insulator phases are identified from the evolution of the density of states,
optical conductivity, and localization length, demonstrating both Mott—Hubbard and Anderson metal-insulator
transitions in two-dimensional systems of finite size, allowing us to construct the complete zero-temperature
phase diagram of the paramagnetic Anderson—Hubbard model. The localization length in our approximation is
practically independent of the strength of Hubbard correlations. But the divergence of the localization length in
a finite-size two-dimensional system at small disorder signifies the existence of an effective Anderson transition.

© 2010

1. INTRODUCTION

The study of disordered electronic systems with the
account of interaction effects is one of the central prob-
lems of the modern condensed matter theory [1]. Ac-
cording to the scaling theory of localization [2], there
is no metallic state in two-dimensional (2D) systems,
with all the electronic states localized at the smallest
possible disorder. This prediction was first made for
noninteracting 2D systems, and soon after it was shown
that the weak electron-electron interaction enhances lo-
calization in most cases [3]. Experiments performed in
the early 1980s on different 2D systems [4] essentially
confirmed these predictions. However, some theoretical
works produced an evidence of a rather different pos-
sibility [5] for 2D systems to evolve to the state with
an infinite metallic-like conductivity at zero temper-
ature in case of weak disorder and sufficiently strong
correlations. Experimental observation of a metal—
insulator transition (MIT) in 2D systems with weak
enough disorder but strong correlations (low electronic
densities) [6], which apparently contradicted the pre-
dictions of the scaling theory of localization, stimu-
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lated extensive theoretical studies, with no commonly
accepted solution up to now (see the review in Ref. [7]).

One of the basic models allowing a simultaneous
account of both strong enough electronic correlations,
leading to the Mott MIT [8], and effects of strong disor-
der, leading to the Anderson MIT [9], is the Anderson—
Hubbard model, intensively studied in recent years
[10-16].

In Refs. [10-12], the three-dimensional (3D) An-
derson-Hubbard model was analyzed using dynamical
mean field theory (DMFT), which is extensively used
in the theory of strongly correlated electrons [17-20].
However, disorder effects were mostly taken into ac-
count via the average density of states and the co-
herent potential approximation (CPA) [21, 22], which
misses the effects of Anderson localization. To over-
come this problem, Dobrosavljevi¢ and Kotliar [10]
have proposed the DMFT approach, where the so-
lution of self-consistent stochastic DMFT equations
were used to calculate the geometrically averaged lo-
cal density of states. This approach was further de-
veloped in Refs. [11, 12] with the DMFT account for
Hubbard correlations, which led to a highly nontriv-
ial phase diagram of the 3D paramagnetic Anderson—
Hubbard model [12], containing the correlated metal,
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Mott insulator, and correlated Anderson insulator
phases. However, the major problem of the approach
in Refs. [10-12] is its practical inability of direct calcu-
lations of conductivity, which actually determines the
MIT itself.

In our previous work [13], we have studied the
3D paramagnetic Anderson—-Hubbard model using our
recently developed DMFT+X approximation [23-26],
which preserves the standard single-impurity DMFT
approach, taking the local Hubbard correlations into
account, allowing the use of the standard “impurity
solvers” like NRG [27-29], at the same time allowing the
inclusion of additional (local or nonlocal) interactions.
Strong disorder was accounted for via some generaliza-
tion of the self-consistent theory of localization [30-35].
In the framework of this approach, we have been able
not only to reproduce the phase diagram qualitatively
similar to that obtained in Ref. [12] but also to cal-
culate the dynamic (optical) conductivity for a wide
frequency range.

In Ref. [15], the Hubbard-Anderson model was
studied for both 3D and 2D systems. As the main
mechanism leading to delocalization, a kind of “screen-
ing” of the random (disorder) potential by a local
Hubbard interaction was introduced [14]. Then the
Anderson—Hubbard model was reduced to an effective
single-particle Anderson model with a renormalized
distribution of local site energies, which was calculated
in the atomic limit. All the other effects of electron cor-
relations were neglected. Strong disorder effects were
accounted for within the self-consistent theory of lo-
calization. In this approach, the authors obtained a
significant increase in the localization length with an
increase in the Hubbard interaction in 2D. However,
the localization length itself remained finite, the sys-
tem being localized at smallest possible disorder, and
hence the Anderson transition in 2D was still absent.
Similar results were also obtained in numerical simula-
tions of the 2D Anderson-Hubbard model in Ref. [16].

In this paper, we directly generalize the method
in Ref. [13] to the case of 2D systems. We use the
DMFT+X approach to calculate the DOS, optical con-
ductivity, and localization length and to construct
the phase diagram of the 2D paramagnetic Anderson—
Hubbard model with strong electronic correlations and
strong disorder. Strong correlations are taken into ac-
count via DMFT, while disorder effects are treated
by the appropriate generalization of the self-consistent
theory of localization.

The paper is organized as follows. In Sec. 2, we
briefly describe our DMFT+X approximation in appli-
cation to the disordered Hubbard model. In Sec. 3, we
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formulate the basic DMFT+X expressions for the op-
tical conductivity and the self-consistency equation for
the generalized diffusion coefficient. Our results for the
DOS, optical conductivity, and localization length are
given in Sec. 4, where we also analyze the phase dia-
gram of the 2D disordered Hubbard model and briefly
discuss the optical sum rule within our approach. Fi-
nally, we present a short conclusion, which includes the
discussion of problems yet to be solved.

2. BASICS OF THE DMFT+% APPROACH

In what follows, we consider the paramagnetic dis-
ordered Anderson-Hubbard model at half-filling for ar-
bitrary correlations and disorder. This model treats
both the Mott—Hubbard and Anderson MIT on the
same footing. The Hamiltonian of the model can be
written as

H=—t Z aifaajg + Zemw +U Znnnu, (1)
io i

(ij)o

where ¢ > 0 is the nearest-neighbor transfer integral,
U is the local Hubbard repulsion, n;, = a;rgai,, is the
electron number operator at a given site i, a;,; (al )
is the annihilation (creation) operator for an electron
with spin o, and the local energies ¢; are assumed to be
randomly and independently distributed over different
lattice sites. To simplify the diagram technique in what

follows, we assume the ¢; distribution to be Gaussian,

1 612
Ple)= o (o). @
where A is a disorder parameter and the Gaussian ran-
dom field (“white” noise) of energy levels ¢; at different
lattice sites induces “impurity”-like scattering, leading
to the standard diagram technique for calculations of
the averaged Green’s functions [35].

The DMFT+X approach, initially proposed in
Refs. [23-26] as a simple method to include nonlo-
cal interactions (fluctuations) into the standard (local)
DMFT scheme, is also very convenient for taking any
additional interaction (local or nonlocal) of arbitrary
nature into account in the DMFT.

In the DMFT+Y approximation, we choose the
single-particle Green’s function in the form

1
T etpu—cp) - SE) - Spe)

Gp(e) (3)

where (p) is the “bare” electron spectrum, (¢) is the
local (DMFT) self-energy due to Hubbard interactions,
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and T,(e) is an “external” (in general case, momen-
tum dependent) self-energy due to some other interac-
tion. The main assumption of our approach (both its
advantage and deficiency) is precisely in this additive
form (neglecting the interference effects) of the total
self-energy in (3) [23-26], which allows retaining the
standard form of self-consistent DMFT equations [20]
with two major generalizations. First, at each iter-
ation of the DMFT loop, we recalculate the “exter-
nal” self-energy X5 (i, €, [Gp(e)]) within some (approx-
imate) scheme, taking the “external” interaction into
account (in the present case, the interaction due to dis-
order scattering). Second, the local Green’s function
for an effective DMFT impurity problem is defined as

1

N

1
—S() - )

G”(é‘) = g 6+,u—5(p) (4)

at each step of the standard DMFT procedure. Finally,
we obtain the desired Green’s function in form (3),
where ¥(¢) and X () are self-energies obtained at the
end of our iteration procedure.

For ¥, (¢) appearing due to disorder scattering, we
use the simple one-loop contribution, neglecting dia-
grams with “crossing” interaction lines, i.e., the self-
consistent Born approximation [35], which in the case
of Gaussian disorder (2) leads to the usual expression

Sp(e) = A* Y~ G(e,p) = Simp(e), (5)

with the “external” self-energy being p-independent (lo-
cal) in this case.

3. OPTICAL CONDUCTIVITY IN THE
DMFT+3 APPROACH

It is obvious that calculations of optical (dynamic)
conductivity provide the direct way to study the MIT
because the frequency dependence of conductivity, as
well as its static value at zero frequency of an exter-
nal field, allows making a clear distinction between the
metallic and insulating phases (at 7' = 0).

A local nature of the irreducible self-energy in
DMEFT allows reducing the calculation of optical con-
ductivity to the calculation of the usual particle-hole
loop without DMFT vertex corrections due to the lo-
cal Hubbard interaction [13,26]. The final expression
for the real part of the optical conductivity obtained in
this way in Refs. [13, 26] takes the form
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where f(g) is Fermi distribution, ¢4 =& + w/2, and
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- () 1 -

gRR(RA) (w) =

PORR(RA)

[

(w,q) — BIRFED ()
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= lim
q—0

(7)
where we introduce two-particle loops

PURRIEA) (1, q) = Z Gey,p)G "M p ) x

P
% FRR(RA)(

(8)

6*7p7;6+7p+)7

represented diagrammatically in Fig. 1 with p4
= p £+ q/2 and with the R and A superscripts corre-
sponding to retarded and advanced Green’s functions.
The vertices TRRE(RA) (c_ p_:c.  p,) contain all ver-
tex corrections due to disorder scattering, but do not
include vertex corrections due to the Hubbard interac-
tion.

The problem is thus much simplified. To calcu-
late the optical conductivity in the DMFT+X approx-
imation, we only have to solve a single-particle prob-
lem to determine the local self-energy (¢4 ) with the
help of DMFT+X procedure described above, while
the nontrivial contribution of disorder scattering en-
ters via ¢OFR(EA) in Eq. (7), which may be calculated
in an appropriate approximation. In fact, gORE(RA)
contains only disorder scattering, although using the
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Green’s functions including the DMFT self-energies, al-
ready determined with the help of the DMFT+X pro-
cedure, as the “bare” Green’s functions. Equation (6)
guarantees the effective interpolation between the case
of strong correlations in the absence of disorder and
the case of pure disorder in the absence of Hubbard
correlations.

The most important ®274(w,q) loop may be cal-
culated using the basic approach of the self-consistent,
theory of localization [30-35] with some generaliza-
tions accounting for the Hubbard interaction within the
DMFT+X approach [13].

The rest is a direct generalization of the scheme pro-
posed in Ref. [13] for the two-dimensional case. Here,
we present only some basic points of the approach in
Ref. [13], stressing important differences due to the two-
dimensionality of the model.

In the RA channel, the two-particle loop ®2%4(q, )
involves a diffusion-like contribution,

~ 3, AG,
¢0RA ~) — P
1> (q,UJ) C:)+7,D(CL))q27

(9)

where AGp, = GR(zy,p) — G*(c_,p). The important
difference from the noninteracting case is contained in

O=ey—e_ — SR )+ 24) =
=w—3Re,) +24l) =w - ADEAY (W) (10)

which replaces the usual w-term in the denominator of
the standard expression for ®°%4(w, q) [35]. Then (6)
can be rewritten as

Reo(w) = 52 [ delfe) = f(en)] %

w?

y Re{izp AGpD(w)

w

o) [1 - w]} ()

The second term in (11), which is actually irrelevant
at small w, can be obtained from (7) by calculating
®9RR (1, q) in the usual “ladder” approximation.

Repeating the derivation scheme of the self-consis-
tent theory of localization in Ref. [13], we obtain the
following equation for the generalized diffusion coeffi-
cient:

D(w) = i% {w — AZRA () +

+ A (AGE)” Y = TIDo H.;)(w)(f} , (12)

P a

where d = 2 is the spatial dimension and AT/ (w) =
=3k (e4)—34,,(e) is determined by disorder scat-
tering. The average velocity (v), well approximated by

the Fermi velocity, is defined as

_ 2p|vplAGy _ O¢(p)
(v) = W7 Vp = op (13)

Due to the limits of diffusion approximation, the sum-
mation over ¢ in (12) must be limited by [33, 35]

q< ko= min{l_l,pp} (14)

where [ = (v)/2v is the mean free path due to elastic
scattering (v is the scattering rate due to disorder) and
pr is Fermi momentum. In our two-dimensional model,
Anderson localization occurs at infinetisimal disorder.
But for small disorder, the localization length is ex-
ponentially large, and hence the size of the sample be-
comes important. The sample size L may be introduced
into the self-consistent theory of localization as a cut-
off of the diffusion pole contribution at small ¢ [30, 31],
i.e., for

g~k =1/L. (15)

Equation (12) for the generalized diffusion coeffi-
cient reduces to a transcendental equation, which is
easily solved by iterations for each value of @, taking
into account that for d = 2 and for the cutoffs defined
by Egs. (14) and (15), the sum over ¢ in (12) reduces
to

/ _ ydy
y* +©/iD(w)kj
kL/kg
1 . 1 —i@/D(w)k2
_z'47rD(w)1 ((kL/ko)Lio?/D(w)k%)' (16)

Solving Eq. (12) for different values of our model pa-
rameters and using Eq. (11), we can directly calculate
the optical (dynamic) conductivity in different phases
of the Anderson—Hubbard model.

For w — 0 (and at the Fermi level (¢ = 0), obvi-
ously, also @ — 0), in the Anderson insulator phase,

11*
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we obtain the localization behavior of the generalized
diffusion coefficient [30, 31, 35]:

= — iR,

D(w) (17)
Substituting (17) in (12), we obtain an equation deter-

mining the localization length Rj,. as

x{ } ,  (18)

where the sum over ¢ is defined by (16). As we see
in what follows, for an infinite two-dimensional sys-
tem (L — 00), the localization length determined by
Eq. (18) remains finite (although exponentially large)
for the smallest possible disorder, signifying the ab-
sence of Anderson transition. But for finite-size sys-
tems, the localization length diverges at some critical
disorder, determined for each value of the system size
L. Qualitatively, this critical disorder is determined
from the condition of the localization length (in the in-
finite system) becoming a quantity of the order of the
characteristic sample size RE > ~ L. Thus, in finite
two-dimensional systems, the Anderson transition and
the metallic phase do exist for the disorder strength
lower than this critical disorder. In what follows, this
kind of metallic phase is referred to as the “correlated
metal” phase in finite 2D systems.

2
Rloc =

1
1+ Rloc2q2

> (MG

P a

4. MAIN RESULTS

Below, we present the results of extensive numeri-
cal calculations for the 2D Anderson—Hubbard model
on a square lattice with a rectangular “bare” DOS cor-
responding to the bandwidth W = 2D:

— <D
5 <

0,

No(e) = (19)

le| > D

The choice of this model DOS is dictated by its 2D
nature.

Everywhere in what follows, we give the DOS values
in units of the number of states per energy interval, per
lattice cell of the volume a? (a is the lattice parameter),
and per one spin projection.

Because we focus on half-filled case, the Fermi level
is always assumed to be at zero energy. As the “impu-
rity solver” for the DMFT effective impurity problem,
we use the reliable numerical renormalization group
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Fig.2. Density of states of the half-filled Anderson—
Hubbard model for different values of U and A = 0
(no disorder)

(NRG) approach [27-29]. Calculations were made for
the low enough temperature 7' ~ 0.001D, and there-
fore temperature effects in the DOS and conductivity
are negligible.

We present only the most typical results.

A. Evolution of the density of states

In Fig. 2, we show the evolution of the DOS with
an increase in Hubbard interaction U in the absence of
disorder. At small U (curve 1 in Fig. 2), we observe
a practically rectangular DOS almost coinciding with
the “bare” one. As U increases, a typical three-peak
structure of the DOS appears [19, 20, 29] (curves 3, 4,
and 5 in Fig. 2): a narrow quasiparticle peak at the
Fermi level with the upper and lower Hubbard bands
at ¢ ~ £U/2. The quasiparticle peak narrows as U in-
creases in the metallic phase, disappearing at the Mott
MIT at U = Ug ~ 1.83 W. With a further increase in
U (curves 6 and 7 in Fig. 2), a dielectric gap opens at
the Fermi level.

In Fig. 3, we show the results for the DOS obtained
at the relatively weak correlation strength U = 1.25W
(W = 2D), ensuring that the system is rather far from
the Mott transition, but for a wide range of the dis-
order strength A. We observe typical widening of the
band with the appropriate suppression of the DOS as
disorder increases.

In Fig. 4, the DOS evolution is shown as the disor-
der A increases at U = 2W, a typical value for a Mott
insulator in the absence of disorder. It can be seen
that the increase in disorder leads to the restoration of



MKITD, Tom 137, BHm. 2, 2010

Two-dimensional Anderson—Hubbard model ...

DOS

12 T T T T T T T
1A/2D =0 1

1.0+ 20.11 n_2 §
30.19 A

0.8} 40.25 A -
50.37

0.6} U/2D =1.25 4

0.4

0.2

0
-2.0 -1.5 -1.0 —-0.5

1.0 1.5 20
e/2D

0.5

Fig.3. Density of states of the half-filled Anderson—

Hubbard model for different values of disorder A and

U/2D = 1.25, typical for a correlated metal (in the
absence of disorder)
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Fig.4. Density of states of the half-filled Anderson—

Hubbard model for different values of disorder A and

U/2D = 2, typical for Mott insulator (in the absence

of disorder). At the inset—restoration of quasiparticle

band by disorder in coexistence (hysteresis) region for

U = 1.5D, obtained from Mott insulator with decrea-
sing U

the quasiparticle peak in the DOS. A similar unusual
behavior of the DOS (closure of the dielectric gap by
disorder) was first noted in 3D systems [13]. But in
the present 2D case, it does not, in general, signify the
transition to the correlated metal phase, at least for
the infinite systems we are in fact dealing with intems
of the correlated Anderson insulator (see below).

The physical reason for this unusual restoration of
the quasiparticle peak in the DOS is clear. The con-
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trol parameter for the appearance or disappearance of a
quasiparticle peak in DMFT in the absence of disorder
is the ratio of the Hubbard interaction U to the “bare”
bandwidth W = 2D. Disordering leads to an increase
in the effective bandwidth Wess (in the absence of the
Hubbard interaction) and the appropriate suppression
of the U /Wy ratio, which obviously leads to a restora-
tion of the quasiparticle band in our model. In more
detail, this qualitative picture is discussed in Sec. 4C,
where our results for the DOS are used in construct-
ing the phase diagram of the 2D Anderson-Hubbard
model.

It is well known, that hysteresis behavior of DOS
is obtained for Mott—Hubbard transition if we perform
DMFT calculations with U decreasing from insulating
phase [20, 29]. Mott insulator phase survives for the
values of U well inside the correlated metal phase, ob-
tained with the increase of U. Metallic phase is restored
at U. ~ 1.42W. The values of U from the interval
Ua < U < Ug are usually considered as belonging
to coexistence region of metallic and (Mott) insulating
phases, with metallic phase being thermodynamically
more stable [20, 29]. In the coexistence region disorder
increase also leads to the restoration of quasiparticle
peak in the DOS (see inset of Fig. 4).

B. Optical conductivity: Mott—Hubbard and
Anderson transitions

The real part of the optical conductivity was cal-
culated for different combinations of parameters of the
model, directly from Egs. (11) and (12) using the re-
sults of the DMFT+X procedure for single-particle
characteristics. The values of conductivity below are
given in natural units of €2 /h.

In the absence of disorder, we just reproduce the re-
sults of the standard DMFT with the optical conduc-
tivity characterized by the usual Drude peak at zero
frequency and a wide maximum at w ~ U correspond-
ing to transitions to the upper Hubbard band. As U
increases, the Drude peak is suppressed and disappears
at the Mott MIT, when the only remaining contribu-
tion is due to transitions through the Mott-Hubbard
gap.

Introduction of disorder leads to a qualitative
change in the frequency behavior of conductivity. Be-
low, we mainly present the results obtained for the
same values of U and A that were used above to il-
lustrate the evolution of the DOS.

In Fig. 5, we show the real part of the opti-
cal conductivity in the 2D half-filled Anderson—Hub-
bard model for different disorder strengths A and
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0.6
w/2D

Fig.5. Real part of the dynamic conductivity of the

half-filled Anderson-Hubbard model for different val-

ues of disorder A and U/2D = 1.25, typical for a cor-

related metal (in the absence of disorder). Inset: the

same, but in a wider frequency range. Thin dashed
lines represent the ladder approximation results

U = 1.25W, when the system is far from the Mott
MIT. Thin dashed lines in Fig. 5 (and in the following
figures) show the results of the “ladder” approximation.
In the 2D model under consideration, the conductivity
at zero frequency is always zero, and in contrast to
the 3D case [13], even for the weakest possible disor-
der, the peak in the optical conductivity is at a finite
frequency. In the “ladder” approximation, which does
not contain localization corrections, the conductivity is
finite at w = 0. Optical transitions to the upper Hub-
bard band at w ~ U are practically unobservable in
these data; only in the inset to Fig. 5, where we show
the data for the wide frequency range, a weak maxi-
mum on curves 1 and 2 can be observed, corresponding
to transitions to the upper Hubbard band.

In Fig. 6, we present the real part of the opti-
cal conductivity for different disorder strengths A and
U = 2W, typical for a Mott insulator. It can be seen
from Fig. 6 that for small disorder, we are in the Mott
insulator phase (curves 1 and 2), and with an increase
in disorder in the absence of Anderson localization (cf.
the thin lines corresponding to the “ladder” approxima-
tion), we would be entering the metallic phase. But in
our model, localization occurs at infinitesimal disorder
and we are actually entering Anderson insulator phase,
with the conductivity ending to zero at zero frequency.
Data in the frequency range corresponding to the loca-
lization behavior o(w) o< w? of conductivity are shown

0 0.5 1.0 1.5 2.0 2.5
w/2D
Fig.6. Real part of the dynamic conductivity of the

half-filled Anderson-Hubbard model for different val-

ues of disorder A and U/2D = 2, typical for Mott

insulator (in the absence of disorder). Curves I and 2

correspond to a Mott insulator, and curves 3—6 corre-

spond to a correlated Anderson insulator. Inset: local-

ization behavior of conductivity. Thin dashed lines are
the ladder approximation results

at the inset to Fig. 6 for curves 5 and 6, correspond-
ing to a large enough disorder. At small disorders, the
frequency region with the localization behavior of the
conductivity is exponentially small") (which is due to
the exponential increase in the localization length at
small disorder, cf. Fig. 9) and is practically unobserv-
able.

The dependence of the optical conductivity on U is
illustrated in Fig. 7. The increase in U shifts the lo-
calization peak in the conductivity to lower frequencies
and leads to its narrowing. Apparently, this is related
to the appropriate suppression of the quasiparticle peak
width in DOS. The value of conductivity at the max-
imum is independent of U. It is interesting to note
that for frequencies larger than the maximum position,
the increase in U suppresses conductivity, while for the
frequencies lower than the maximum position, the in-
crease in U enhances conductivity (in a sense, playing
against localization).

To confirm the self-consistency of our approach to
conductivity calculations, we conclude this section with
a discussion of the optical sum rule, which relates
single-particle and two-particle characteristics [36].

1) This region corresponds to frequencies w <K we ~
3 R 2
~ D3 (IT) 30, 31].
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02 03 04 05 06 07 08

0 0.1
w/2D
Fig.7. Real part of the dynamic conductivity of the

half-filled Anderson-Hubbard model for different val-
ues of U and A/2D = 0.19. Thin dashed lines are
ladder approximation results

Table. Check of the single-band optical sum rule in
the Anderson—Hubbard model. The optical integral is
given in units of 2e>D/h

A/2D|we* |23 8y /0piny|Wopt = [Reo(w) dw
0

0.19 0.099 0.098

0.25 0.099 0.098

0.37 0.092 0.091

0.5 0.081 0.082

The single-band Kubo sum rule [37] for the dynamic
conductivity can be written as

me? = 0%

— > s (20)
p opy

oo
Wopt = /Rea(w) dw = 5
0
where n,, is the single-particle momentum distribution
function, determined by the interacting retarded elec-
tron Green’s function G (s, p):

oo

ny = —% / de f(s)ImG’R(s,p),

—0o0

(21)

where f(e) is the Fermi distribution.

In Table, we show calculated values of the right-
hand side and of the left-hand side of Eq. (20) for
U = 1.5W. It is clearly seen that optical sum rule (20)
is fulfilled within our numerical accuracy.
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Fig.8. Dependence of the normalized optical integral
of the Anderson—-Hubbard model on U for different val-
ues of disorder A. Inset: a similar dependence on A for
different values of U (U/2D = 1 (curve 1), 1.5 (2),
2 (3), 2.5 (4)). Curves 1 and 2 pertain to a “corre-
lated metal” transforming into the Anderson insulator.
Curves 3 and 4 are a Mott insulator, obtained as U
increases from “correlated metal” or Anderson insulator
value

Very often, the optical sum rule is understood as
the equality of the optical integral W, to the “univer-
sal” value of wf,, /8, where wy is the plasma frequency,
which, strictly speaking, is not correct in the single-
band case; in this sense, we may speak of an optical
sum rule “violation”. In fact, the optical integral de-
pends on parameters of the model, e.g., on the Hub-
bard interaction and disorder (Fig. 8). The increase in
U significantly suppresses the value of the optical in-
tegral. The dependence on the disorder strength A is
also important; in particular, under a disorder-induced
transition from the Mott to the Anderson insulator, we
observe a kind of discontinuity of the optical integral
(curves 3 and 4 at the inset to Fig. 8).

C. Localization length and phase diagram of
the 2D Anderson—Hubbard model

To proceed, on the left axis in Fig. 9 we present
our data for the real part of the conductivity at a fixed
and sufficiently small frequency w = 0.00005D plotted
as a function of the disorder strength A. Circles show
the results of “ladder” approximation, and triangles,
the results of the self-consistent theory of localization
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Fig.9. Left scale shows the dependence of conductiv-
ity on disorder A at the fixed frequency w = 0.00005D
and U/2D = 1. Circles (curve 1) — ladder approx-
imation; triangles (curve 2) — self-consistent theory
of localization. Curve 3, practically coinciding with the
ladder approximation results, is obtained from Drude
expression (22). Static conductivity for finite samples
of sizes L = 10%a (curve 4) and L = 10°a (curve 5).
Right scale shows the dependence of the localization
length logarithm on disorder A for an infinite sample
(curve 1) and for finite samples of sizes L = 10%a
(curve 2) and L = 10%a (curve 3)

(we take U = 0 here). Curve 3, which practically coin-
cides with the results of the “ladder” approximation, is
obtained from the usual Drude expression

,)/2

7(w) = 0(0) .

7(0) (22)

where the static conductivity is given by

62 EF

[ —

a(0) AT

e?N(0) Dy
with N(0) being the density of states at the Fermi level,
Dy the classical diffusion coefficient, and e ~ D the
Fermi energy. The impurity scattering rate was taken
as -

~ T A2

~ ZDA .

It can be seen that a noticeable contribution of local-
ization corrections to conductivity (the clear difference
between curve 2 and curves 1 and 3) appears only af-
ter the conductivity decreases below the values of the
order of the “minimal” metallic conductivity oq = €2/h
(our data for conductivity are actually normalized by
this value in all figures). We see below that precisely in
this region, a kind of Anderson MIT (divergence of the

v =N (0)A?
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localization length) occurs in 2D systems of reasonable
finite sizes.

On the right axis in Fig. 9, we show our data for
the logarithm of the localization length calculated from
Eq. (18) as a function of disorder for an infinite sample
(curve 1) and for finite samples with L = 108a and
L =10%a (curves 2 and 3). Tt is clearly seen that the
localization length increases exponentially as the disor-
der decreases, but remains finite in the infinite 2D sam-
ple, signifying the absence of the Anderson transition.
In finite samples, the localization length diverges at
some critical disorder (depending on the system size),
demonstrating the existence of an effective Anderson
transition. It follows from Fig. 9 that this critical dis-
order is achieved when the localization length of an
infinite system becomes comparable to the characteris-
tic size of the sample: RILO?C’O ~ L. We note that in our
approach, in contrast to the results in Ref. [15], the lo-
calization length is practically independent of U, which
leads to the independence of the critical disorder in 2D
from the correlation strength U. A similar result?) was
obtained in our approach for 3D systems [13].

On the left axis in Fig. 9, the disorder dependence
of the static conductivity for finite samples of the sizes
L = 108 and L = 10%a (curves 4 and 5) is shown.
For finite systems with small disorder, the static con-
ductivity is not zero (metal). It gradualy decreases as
the disorder increases and becomes zero at the same
critical value where the localization radius diverges on
approach from the insulating phase in a finite sample.
The static conductivity of finite samples in our cal-
culations is practically independent of the correlation
strength U. A rather significant difference between the
values of static conductivity and that of conductivity
at small but nonzero frequencies seen in Fig. 9 comes
from the exponential smallness of the frequency range
of localization behavior mentioned above.

We now discuss our results for the phase diagram of
the 2D half-filled Anderson—Hubbard model, obtained
from extensive DMFT+X calculations of the DOS and
the analysis of the localization length behavior in finite
2D systems. The general form of this phase diagram
in the disorder—correlation (A,U) plane is shown in
Fig. 10.

The dashed stripe in Fig. 10 corresponds to the re-
gion of an effective transition from the Anderson in-
sulator to the “metallic” phase. Its boundaries were
determined by divergence of the localization length in

2) Qur calculations of the localization length for a 3D system
performed after the publication of Ref. [13] have demonstrated
that it is practically independent of the value of U.
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Fig.10. Phase diagram of the two-dimensional param-
agnetic Anderson—Hubbard model at zero temperature.
The border of Mott insulator region Uc2(A) and the
border of coexistence (hysteresis) region U.i1(A) are
obtained from the evolution of the density of states,
and U}5(A) is calculated from (24). The dashed stripe
corresponds to the narrow region where the Anderson
metal—insulator transition occurs in finite systems

finite samples with characteristic sizes L = 10%a (upper
boundary) and L = 10%a (lower boundary) (cf. Fig. 9).
We stress that a further increase in the system size,
e.g., 10 times up to L = 10%a, leads only to a prac-
tically negligible downshift of the lower boundary (de-
crease in the critical disorder) of the dashed stripe in
Fig. 10.

The dependence of U.2(A) obtained from the DOS
behavior determines the boundary for the Mott transi-
tion and is defined by the disappearance of the quasi-
particle peak in the DOS and by correlation gap open-
ing at the Fermi level (cf. Figs. 2, 4).

In our previous work [13] on the 3D Anderson—
Hubbard model, we proposed a simple explanation of
the U1 ¢2(A) dependence. Assuming that the control-
ling parameter of the Mott—Hubbard transition, given
by the ratio Uet c2(A)/Weps(A) of the Hubbard inter-
action to the effective bandwidth (depending on disor-
der), is a universal constant (independent of disorder),
we obtain

Ucl7c2 (A) — Uc17c2 (0)
W b

Wegr(A)

(23)

where Wepp(A) is an effective bandwidth in the pres-
ence of disorder, calculated at U = 0 in self-consistent
Born approximation (5). In the 3D model [13], the de-
pendence of the critical correlation strength on disorder

377

Ue1,e2(A), obtained directly from the evolution of the
DOS, has shown a quite satisfactory agreement with
the qualitative dependence obtained from Eq. (23)3).

In the 2D model under consideration here, a solu-
tion of Eq. (23) gives

Wags () _
w

2A2
W ln < ) + C) s (24)
where ¢ = 1/4 (A/W)? + 1. However, unlike in the 3D

case [13], the Ug(A) dependence obtained from the
DOS evolution is clearly different from the qualitative
dependence U, (A) (the dotted line in Fig. 10), deter-
mined by Eq. (24). Probably, this is due to a signifi-
cant change in the rectangular form of the “bare” DOS
with an increase in the disorder A, which is absent for
the semi-elliptic “bare” DOS used in the 3D case in
Ref. [13].

As we already noted, with decrease of U from insu-
lating phase Mott transition occurs at U = Ug(A) <
< Ug2(A) and the coexistence (hysteresis) region is ob-
served between Ug(A) and Uea(A) curves on phase
diagram Fig. 10.

;1,.:2(A) = Uet,e2 (0)

c+1
= 01,02(0) <

c—1

5. CONCLUSION

We have used the generalized DMFT+Y approach
to study basic properties of the disordered and cor-
related Anderson—Hubbard model. Our method pro-
duces a relatively simple interpolation scheme between
two well-studied limits, the strongly correlated Hub-
bard model in the absence of disorder (DMFT and
Mott—Hubbard MIT) and the 2D Anderson insulator
in the infinite system without electron—electron interac-
tions. It seems that the proposed interpolation scheme
reflects all the qualitative features of the Anderson—
Hubbard model, such as the behavior of the density of
states and dynamic conductivity. The general structure
of the phase diagram obtained in the DMFT+X ap-
proximation is also in reasonable agreement with the re-
sults of direct numerical simulations [16]. At the same
time, the DMFT-+X approach is rather competitive in
the sense of the amount of numerical work and allows
direct calculations of all the basic observable character-
istics of the Anderson—-Hubbard model.

3) Further extensive calculations performed after the comple-
tion of Ref. [13] have confirmed a practically ideal agreement
between these dependences.
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We stress that an effective Anderson transition ob-
tained here in the case of finite-size 2D systems is in
no sense attributed to electronic correlations and also
follows directly from the self-consistent theory of local-
ization in the absence of correlations.

The main shortcoming of the method used is the
neglect of the interference between disorder scattering
and Hubbard interaction, which leads to the indepen-
dence of the localization length and critical disorder A,
(in finite 2D systems) from the correlation strength U.
The importance of this kind of interference effects has
been known since long ago [1, 5], although these can be
taken into account only in the case of weak correlations
and disorder. At the same time, the neglect of the in-
terference effects is the key point of our DMFT+X ap-
proach, which allows obtaining rather simple and phys-
ically clear interpolation scheme and analyzing the lim-
its of strong correlations and disorder.

Another drastic simplification is our assumption of
a nonmagnetic (paramagnetic) nature of the ground
state of the Anderson-Hubbard model. The impor-
tance of magnetic (spin) effects in strongly correlated
and disordered systems is obvious, as is the impor-
tance of competition between different kinds of mag-
netic ground states [20].

Despite these shortcomings, our results seem rather
attractive and reliable, e.g., with respect to strong
disorder effects on the Mott—Hubbard transition and
the general form of the phase diagram at 7' = 0. Our
predictions for the general behavior of the dynamic
(optical) conductivity and the disorder-induced Mott
insulator to the effective “metal” transition can be
directly compared with the existing and future experi-
ments.
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