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TWO-DIMENSIONAL ANDERSON�HUBBARD MODELIN THE DMFT+� APPROXIMATIONE. Z. Ku
hinskii *, N. A. Kuleeva, I. A. Nekrasov, M. V. Sadovskii **Institute for Ele
trophysi
s, Russian A
ademy of S
ien
es620016, Ekaterinburg, RussiaRe
eived August 26, 2009The density of states, the dynami
 (opti
al) 
ondu
tivity, and the phase diagram of the paramagneti
 two-dimensional Anderson�Hubbard model with strong 
orrelations and disorder are analyzed within the generalizeddynami
al mean �eld theory (DMFT+� approximation). Strong 
orrelations are a

ounted by the DMFT, whiledisorder is taken into a

ount via the appropriate generalization of the self-
onsistent theory of lo
alization. We
onsider the two-dimensional system with the re
tangular �bare� density of states (DOS). The DMFT e�e
-tive single-impurity problem is solved by numeri
al renormalization group (NRG). The �
orrelated metal�, Mottinsulator, and 
orrelated Anderson insulator phases are identi�ed from the evolution of the density of states,opti
al 
ondu
tivity, and lo
alization length, demonstrating both Mott�Hubbard and Anderson metal�insulatortransitions in two-dimensional systems of �nite size, allowing us to 
onstru
t the 
omplete zero-temperaturephase diagram of the paramagneti
 Anderson�Hubbard model. The lo
alization length in our approximation ispra
ti
ally independent of the strength of Hubbard 
orrelations. But the divergen
e of the lo
alization length ina �nite-size two-dimensional system at small disorder signi�es the existen
e of an e�e
tive Anderson transition.1. INTRODUCTIONThe study of disordered ele
troni
 systems with thea

ount of intera
tion e�e
ts is one of the 
entral prob-lems of the modern 
ondensed matter theory [1℄. A
-
ording to the s
aling theory of lo
alization [2℄, thereis no metalli
 state in two-dimensional (2D) systems,with all the ele
troni
 states lo
alized at the smallestpossible disorder. This predi
tion was �rst made fornonintera
ting 2D systems, and soon after it was shownthat the weak ele
tron-ele
tron intera
tion enhan
es lo-
alization in most 
ases [3℄. Experiments performed inthe early 1980s on di�erent 2D systems [4℄ essentially
on�rmed these predi
tions. However, some theoreti
alworks produ
ed an eviden
e of a rather di�erent pos-sibility [5℄ for 2D systems to evolve to the state withan in�nite metalli
-like 
ondu
tivity at zero temper-ature in 
ase of weak disorder and su�
iently strong
orrelations. Experimental observation of a metal�insulator transition (MIT) in 2D systems with weakenough disorder but strong 
orrelations (low ele
troni
densities) [6℄, whi
h apparently 
ontradi
ted the pre-di
tions of the s
aling theory of lo
alization, stimu-*E-mail: ku
hinsk�iep.uran.ru**E-mail: sadovski�iep.uran.ru

lated extensive theoreti
al studies, with no 
ommonlya

epted solution up to now (see the review in Ref. [7℄).One of the basi
 models allowing a simultaneousa

ount of both strong enough ele
troni
 
orrelations,leading to the Mott MIT [8℄, and e�e
ts of strong disor-der, leading to the Anderson MIT [9℄, is the Anderson�Hubbard model, intensively studied in re
ent years[10�16℄.In Refs. [10�12℄, the three-dimensional (3D) An-derson�Hubbard model was analyzed using dynami
almean �eld theory (DMFT), whi
h is extensively usedin the theory of strongly 
orrelated ele
trons [17�20℄.However, disorder e�e
ts were mostly taken into a
-
ount via the average density of states and the 
o-herent potential approximation (CPA) [21, 22℄, whi
hmisses the e�e
ts of Anderson lo
alization. To over-
ome this problem, Dobrosavljevi¢ and Kotliar [10℄have proposed the DMFT approa
h, where the so-lution of self-
onsistent sto
hasti
 DMFT equationswere used to 
al
ulate the geometri
ally averaged lo-
al density of states. This approa
h was further de-veloped in Refs. [11, 12℄ with the DMFT a

ount forHubbard 
orrelations, whi
h led to a highly nontriv-ial phase diagram of the 3D paramagneti
 Anderson�Hubbard model [12℄, 
ontaining the 
orrelated metal,368
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orrelated Anderson insulatorphases. However, the major problem of the approa
hin Refs. [10�12℄ is its pra
ti
al inability of dire
t 
al
u-lations of 
ondu
tivity, whi
h a
tually determines theMIT itself.In our previous work [13℄, we have studied the3D paramagneti
 Anderson�Hubbard model using ourre
ently developed DMFT+� approximation [23�26℄,whi
h preserves the standard single-impurity DMFTapproa
h, taking the lo
al Hubbard 
orrelations intoa

ount, allowing the use of the standard �impuritysolvers� like NRG [27�29℄, at the same time allowing thein
lusion of additional (lo
al or nonlo
al) intera
tions.Strong disorder was a

ounted for via some generaliza-tion of the self-
onsistent theory of lo
alization [30�35℄.In the framework of this approa
h, we have been ablenot only to reprodu
e the phase diagram qualitativelysimilar to that obtained in Ref. [12℄ but also to 
al-
ulate the dynami
 (opti
al) 
ondu
tivity for a widefrequen
y range.In Ref. [15℄, the Hubbard�Anderson model wasstudied for both 3D and 2D systems. As the mainme
hanism leading to delo
alization, a kind of �s
reen-ing� of the random (disorder) potential by a lo
alHubbard intera
tion was introdu
ed [14℄. Then theAnderson�Hubbard model was redu
ed to an e�e
tivesingle-parti
le Anderson model with a renormalizeddistribution of lo
al site energies, whi
h was 
al
ulatedin the atomi
 limit. All the other e�e
ts of ele
tron 
or-relations were negle
ted. Strong disorder e�e
ts werea

ounted for within the self-
onsistent theory of lo-
alization. In this approa
h, the authors obtained asigni�
ant in
rease in the lo
alization length with anin
rease in the Hubbard intera
tion in 2D. However,the lo
alization length itself remained �nite, the sys-tem being lo
alized at smallest possible disorder, andhen
e the Anderson transition in 2D was still absent.Similar results were also obtained in numeri
al simula-tions of the 2D Anderson�Hubbard model in Ref. [16℄.In this paper, we dire
tly generalize the methodin Ref. [13℄ to the 
ase of 2D systems. We use theDMFT+� approa
h to 
al
ulate the DOS, opti
al 
on-du
tivity, and lo
alization length and to 
onstru
tthe phase diagram of the 2D paramagneti
 Anderson�Hubbard model with strong ele
troni
 
orrelations andstrong disorder. Strong 
orrelations are taken into a
-
ount via DMFT, while disorder e�e
ts are treatedby the appropriate generalization of the self-
onsistenttheory of lo
alization.The paper is organized as follows. In Se
. 2, webrie�y des
ribe our DMFT+� approximation in appli-
ation to the disordered Hubbard model. In Se
. 3, we

formulate the basi
 DMFT+� expressions for the op-ti
al 
ondu
tivity and the self-
onsisten
y equation forthe generalized di�usion 
oe�
ient. Our results for theDOS, opti
al 
ondu
tivity, and lo
alization length aregiven in Se
. 4, where we also analyze the phase dia-gram of the 2D disordered Hubbard model and brie�ydis
uss the opti
al sum rule within our approa
h. Fi-nally, we present a short 
on
lusion, whi
h in
ludes thedis
ussion of problems yet to be solved.2. BASICS OF THE DMFT+� APPROACHIn what follows, we 
onsider the paramagneti
 dis-ordered Anderson�Hubbard model at half-�lling for ar-bitrary 
orrelations and disorder. This model treatsboth the Mott�Hubbard and Anderson MIT on thesame footing. The Hamiltonian of the model 
an bewritten asH = �tXhiji� ayi�aj� +Xi� �ini� + UXi ni"ni#; (1)where t > 0 is the nearest-neighbor transfer integral,U is the lo
al Hubbard repulsion, ni� = ayi�ai� is theele
tron number operator at a given site i, ai� (ayi�)is the annihilation (
reation) operator for an ele
tronwith spin �, and the lo
al energies �i are assumed to berandomly and independently distributed over di�erentlatti
e sites. To simplify the diagram te
hnique in whatfollows, we assume the �i distribution to be Gaussian,P(�i) = 1p2�� exp�� �2i2�2� ; (2)where � is a disorder parameter and the Gaussian ran-dom �eld (�white� noise) of energy levels �i at di�erentlatti
e sites indu
es �impurity�-like s
attering, leadingto the standard diagram te
hnique for 
al
ulations ofthe averaged Green's fun
tions [35℄.The DMFT+� approa
h, initially proposed inRefs. [23�26℄ as a simple method to in
lude nonlo-
al intera
tions (�u
tuations) into the standard (lo
al)DMFT s
heme, is also very 
onvenient for taking anyadditional intera
tion (lo
al or nonlo
al) of arbitrarynature into a

ount in the DMFT.In the DMFT+� approximation, we 
hoose thesingle-parti
le Green's fun
tion in the formGp(") = 1"+ �� "(p)� �(")� �p(") ; (3)where "(p) is the �bare� ele
tron spe
trum, �(") is thelo
al (DMFT) self-energy due to Hubbard intera
tions,11 ÆÝÒÔ, âûï. 2 369



E. Z. Ku
hinskii, N. A. Kuleeva, I. A. Nekrasov, M. V. Sadovskii ÆÝÒÔ, òîì 137, âûï. 2, 2010and �p(") is an �external� (in general 
ase, momen-tum dependent) self-energy due to some other intera
-tion. The main assumption of our approa
h (both itsadvantage and de�
ien
y) is pre
isely in this additiveform (negle
ting the interferen
e e�e
ts) of the totalself-energy in (3) [23�26℄, whi
h allows retaining thestandard form of self-
onsistent DMFT equations [20℄with two major generalizations. First, at ea
h iter-ation of the DMFT loop, we re
al
ulate the �exter-nal� self-energy �p(�; "; [Gp(")℄) within some (approx-imate) s
heme, taking the �external� intera
tion intoa

ount (in the present 
ase, the intera
tion due to dis-order s
attering). Se
ond, the lo
al Green's fun
tionfor an e�e
tive DMFT impurity problem is de�ned asGii(") = 1N Xp 1"+ �� "(p)� �(")� �p(") (4)at ea
h step of the standard DMFT pro
edure. Finally,we obtain the desired Green's fun
tion in form (3),where �(") and �p(") are self-energies obtained at theend of our iteration pro
edure.For �p(") appearing due to disorder s
attering, weuse the simple one-loop 
ontribution, negle
ting dia-grams with �
rossing� intera
tion lines, i. e., the self-
onsistent Born approximation [35℄, whi
h in the 
aseof Gaussian disorder (2) leads to the usual expression�p(") = �2Xp G(";p) � �imp("); (5)with the �external� self-energy being p-independent (lo-
al) in this 
ase.3. OPTICAL CONDUCTIVITY IN THEDMFT+� APPROACHIt is obvious that 
al
ulations of opti
al (dynami
)
ondu
tivity provide the dire
t way to study the MITbe
ause the frequen
y dependen
e of 
ondu
tivity, aswell as its stati
 value at zero frequen
y of an exter-nal �eld, allows making a 
lear distin
tion between themetalli
 and insulating phases (at T = 0).A lo
al nature of the irredu
ible self-energy inDMFT allows redu
ing the 
al
ulation of opti
al 
on-du
tivity to the 
al
ulation of the usual parti
le�holeloop without DMFT vertex 
orre
tions due to the lo-
al Hubbard intera
tion [13; 26℄. The �nal expressionfor the real part of the opti
al 
ondu
tivity obtained inthis way in Refs. [13; 26℄ takes the form

"+p+"�p�"+p+"�p�
ARR�0RA" (q; !) =

�0RR" (q; !) =
�RA
�RRRFig. 1. Diagram representation of �0RA" (q; !) and�0RR" (q; !)Re�(!) = e2!2� 1Z�1 d" [f("�)� f("+)℄��Re(�0RA" (!) �1� �R("+)� �A("�)! �2 �� �0RR" (!) �1� �R("+)� �R("�)! �2) ; (6)where f(") is Fermi distribution, "� = "� !=2, and�0RR(RA)" (!) == limq!0 �0RR(RA)" (!;q)� �0RR(RA)" (!; 0)q2 ; (7)where we introdu
e two-parti
le loops�0RR(RA)" (!;q) =Xp GR("+;p+)GR(A)("�;p�)�� �RR(RA)("�;p�; "+;p+); (8)represented diagrammati
ally in Fig. 1 with p� == p � q=2 and with the R and A supers
ripts 
orre-sponding to retarded and advan
ed Green's fun
tions.The verti
es �RR(RA)("�;p�; "+;p+) 
ontain all ver-tex 
orre
tions due to disorder s
attering, but do notin
lude vertex 
orre
tions due to the Hubbard intera
-tion.The problem is thus mu
h simpli�ed. To 
al
u-late the opti
al 
ondu
tivity in the DMFT+� approx-imation, we only have to solve a single-parti
le prob-lem to determine the lo
al self-energy �("�) with thehelp of DMFT+� pro
edure des
ribed above, whilethe nontrivial 
ontribution of disorder s
attering en-ters via �0RR(RA) in Eq. (7), whi
h may be 
al
ulatedin an appropriate approximation. In fa
t, �0RR(RA)
ontains only disorder s
attering, although using the370



ÆÝÒÔ, òîì 137, âûï. 2, 2010 Two-dimensional Anderson�Hubbard model : : :Green's fun
tions in
luding the DMFT self-energies, al-ready determined with the help of the DMFT+� pro-
edure, as the �bare� Green's fun
tions. Equation (6)guarantees the e�e
tive interpolation between the 
aseof strong 
orrelations in the absen
e of disorder andthe 
ase of pure disorder in the absen
e of Hubbard
orrelations.The most important �0RA" (!;q) loop may be 
al-
ulated using the basi
 approa
h of the self-
onsistenttheory of lo
alization [30�35℄ with some generaliza-tions a

ounting for the Hubbard intera
tion within theDMFT+� approa
h [13℄.The rest is a dire
t generalization of the s
heme pro-posed in Ref. [13℄ for the two-dimensional 
ase. Here,we present only some basi
 points of the approa
h inRef. [13℄, stressing important di�eren
es due to the two-dimensionality of the model.In the RA 
hannel, the two-parti
le loop �0RA" (q; ~!)involves a di�usion-like 
ontribution,�0RA" (q; ~!) = �Pp�Gp~! + iD(!)q2 ; (9)where �Gp = GR("+;p)�GA("�;p). The importantdi�eren
e from the nonintera
ting 
ase is 
ontained in~! = "+ � "� � �R("+) + �A("�) == ! � �R("+) + �A("�) � ! ���RA(!) (10)whi
h repla
es the usual !-term in the denominator ofthe standard expression for �0RA" (!;q) [35℄. Then (6)
an be rewritten asRe�(!) = e2!2� 1Z�1 d" [f("�)� f("+)℄��Re( iPp�GpD(!)!2 �� �0RR" (!) �1� ��RR(!)! �2) : (11)The se
ond term in (11), whi
h is a
tually irrelevantat small !, 
an be obtained from (7) by 
al
ulating�0RR" (!;q) in the usual �ladder� approximation.Repeating the derivation s
heme of the self-
onsis-tent theory of lo
alization in Ref. [13℄, we obtain thefollowing equation for the generalized di�usion 
oe�-
ient:

D(!) = i hvi2d (~! ���RAimp(!) ++ �4Xp (�Gp)2Xq 1~! + iD(!)q2)�1 ; (12)where d = 2 is the spatial dimension and ��RAimp(!) == �Rimp("+)��Aimp("�) is determined by disorder s
at-tering. The average velo
ity hvi, well approximated bythe Fermi velo
ity, is de�ned ashvi = Pp jvpj�GpPp�Gp ; vp = ��(p)�p : (13)Due to the limits of di�usion approximation, the sum-mation over q in (12) must be limited by [33, 35℄q < k0 = minfl�1; pF g (14)where l = hvi=2
 is the mean free path due to elasti
s
attering (
 is the s
attering rate due to disorder) andpF is Fermi momentum. In our two-dimensional model,Anderson lo
alization o

urs at in�netisimal disorder.But for small disorder, the lo
alization length is ex-ponentially large, and hen
e the size of the sample be-
omes important. The sample size Lmay be introdu
edinto the self-
onsistent theory of lo
alization as a 
ut-o� of the di�usion pole 
ontribution at small q [30, 31℄,i. e., for q � kL = 1=L: (15)Equation (12) for the generalized di�usion 
oe�-
ient redu
es to a trans
endental equation, whi
h iseasily solved by iterations for ea
h value of ~!, takinginto a

ount that for d = 2 and for the 
uto�s de�nedby Eqs. (14) and (15), the sum over q in (12) redu
estoXq 1~! + iD(!)q2 = 1i2�D(!) �� 1ZkL=k0 y dyy2 + ~!=iD(!)k20 == 1i4�D(!) ln� 1� i~!=D(!)k20(kL=k0)2 � i~!=D(!)k20� : (16)Solving Eq. (12) for di�erent values of our model pa-rameters and using Eq. (11), we 
an dire
tly 
al
ulatethe opti
al (dynami
) 
ondu
tivity in di�erent phasesof the Anderson�Hubbard model.For ! ! 0 (and at the Fermi level (" = 0), obvi-ously, also ~! ! 0), in the Anderson insulator phase,371 11*
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alization behavior of the generalizeddi�usion 
oe�
ient [30, 31, 35℄:D(!) = �i~!Rlo
2: (17)Substituting (17) in (12), we obtain an equation deter-mining the lo
alization length Rlo
 asRlo
2 = �hvi2d�4 ��(Xp (�Gp)2Xq 11 +Rlo
2q2)�1 ; (18)where the sum over q is de�ned by (16). As we seein what follows, for an in�nite two-dimensional sys-tem (L ! 1), the lo
alization length determined byEq. (18) remains �nite (although exponentially large)for the smallest possible disorder, signifying the ab-sen
e of Anderson transition. But for �nite-size sys-tems, the lo
alization length diverges at some 
riti
aldisorder, determined for ea
h value of the system sizeL. Qualitatively, this 
riti
al disorder is determinedfrom the 
ondition of the lo
alization length (in the in-�nite system) be
oming a quantity of the order of the
hara
teristi
 sample size RL!1lo
 � L. Thus, in �nitetwo-dimensional systems, the Anderson transition andthe metalli
 phase do exist for the disorder strengthlower than this 
riti
al disorder. In what follows, thiskind of metalli
 phase is referred to as the �
orrelatedmetal� phase in �nite 2D systems.4. MAIN RESULTSBelow, we present the results of extensive numeri-
al 
al
ulations for the 2D Anderson�Hubbard modelon a square latti
e with a re
tangular �bare� DOS 
or-responding to the bandwidth W = 2D:N0(") =8><>: 12D; j"j � D0; j"j > D : (19)The 
hoi
e of this model DOS is di
tated by its 2Dnature.Everywhere in what follows, we give the DOS valuesin units of the number of states per energy interval, perlatti
e 
ell of the volume a2 (a is the latti
e parameter),and per one spin proje
tion.Be
ause we fo
us on half-�lled 
ase, the Fermi levelis always assumed to be at zero energy. As the �impu-rity solver� for the DMFT e�e
tive impurity problem,we use the reliable numeri
al renormalization group
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Fig. 2. Density of states of the half-�lled Anderson�Hubbard model for di�erent values of U and � = 0(no disorder)(NRG) approa
h [27�29℄. Cal
ulations were made forthe low enough temperature T � 0:001D, and there-fore temperature e�e
ts in the DOS and 
ondu
tivityare negligible.We present only the most typi
al results.A. Evolution of the density of statesIn Fig. 2, we show the evolution of the DOS withan in
rease in Hubbard intera
tion U in the absen
e ofdisorder. At small U (
urve 1 in Fig. 2), we observea pra
ti
ally re
tangular DOS almost 
oin
iding withthe �bare� one. As U in
reases, a typi
al three-peakstru
ture of the DOS appears [19, 20, 29℄ (
urves 3, 4,and 5 in Fig. 2): a narrow quasiparti
le peak at theFermi level with the upper and lower Hubbard bandsat " � �U=2. The quasiparti
le peak narrows as U in-
reases in the metalli
 phase, disappearing at the MottMIT at U = U
2 � 1:83 W. With a further in
rease inU (
urves 6 and 7 in Fig. 2), a diele
tri
 gap opens atthe Fermi level.In Fig. 3, we show the results for the DOS obtainedat the relatively weak 
orrelation strength U = 1:25W(W = 2D), ensuring that the system is rather far fromthe Mott transition, but for a wide range of the dis-order strength �. We observe typi
al widening of theband with the appropriate suppression of the DOS asdisorder in
reases.In Fig. 4, the DOS evolution is shown as the disor-der � in
reases at U = 2W , a typi
al value for a Mottinsulator in the absen
e of disorder. It 
an be seenthat the in
rease in disorder leads to the restoration of372
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Fig. 3. Density of states of the half-�lled Anderson�Hubbard model for di�erent values of disorder � andU=2D = 1:25, typi
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orrelated metal (in theabsen
e of disorder)
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Fig. 4. Density of states of the half-�lled Anderson�Hubbard model for di�erent values of disorder � andU=2D = 2, typi
al for Mott insulator (in the absen
eof disorder). At the inset � restoration of quasiparti
leband by disorder in 
oexisten
e (hysteresis) region forU = 1:5D, obtained from Mott insulator with de
rea-sing Uthe quasiparti
le peak in the DOS. A similar unusualbehavior of the DOS (
losure of the diele
tri
 gap bydisorder) was �rst noted in 3D systems [13℄. But inthe present 2D 
ase, it does not, in general, signify thetransition to the 
orrelated metal phase, at least forthe in�nite systems we are in fa
t dealing with intemsof the 
orrelated Anderson insulator (see below).The physi
al reason for this unusual restoration ofthe quasiparti
le peak in the DOS is 
lear. The 
on-

trol parameter for the appearan
e or disappearan
e of aquasiparti
le peak in DMFT in the absen
e of disorderis the ratio of the Hubbard intera
tion U to the �bare�bandwidth W = 2D. Disordering leads to an in
reasein the e�e
tive bandwidth Weff (in the absen
e of theHubbard intera
tion) and the appropriate suppressionof the U=Weff ratio, whi
h obviously leads to a restora-tion of the quasiparti
le band in our model. In moredetail, this qualitative pi
ture is dis
ussed in Se
. 4C,where our results for the DOS are used in 
onstru
t-ing the phase diagram of the 2D Anderson�Hubbardmodel.It is well known, that hysteresis behavior of DOSis obtained for Mott�Hubbard transition if we performDMFT 
al
ulations with U de
reasing from insulatingphase [20, 29℄. Mott insulator phase survives for thevalues of U well inside the 
orrelated metal phase, ob-tained with the in
rease of U . Metalli
 phase is restoredat U
1 � 1:42W . The values of U from the intervalU
1 < U < U
2 are usually 
onsidered as belongingto 
oexisten
e region of metalli
 and (Mott) insulatingphases, with metalli
 phase being thermodynami
allymore stable [20, 29℄. In the 
oexisten
e region disorderin
rease also leads to the restoration of quasiparti
lepeak in the DOS (see inset of Fig. 4).B. Opti
al 
ondu
tivity: Mott�Hubbard andAnderson transitionsThe real part of the opti
al 
ondu
tivity was 
al-
ulated for di�erent 
ombinations of parameters of themodel, dire
tly from Eqs. (11) and (12) using the re-sults of the DMFT+� pro
edure for single-parti
le
hara
teristi
s. The values of 
ondu
tivity below aregiven in natural units of e2=~.In the absen
e of disorder, we just reprodu
e the re-sults of the standard DMFT with the opti
al 
ondu
-tivity 
hara
terized by the usual Drude peak at zerofrequen
y and a wide maximum at ! � U 
orrespond-ing to transitions to the upper Hubbard band. As Uin
reases, the Drude peak is suppressed and disappearsat the Mott MIT, when the only remaining 
ontribu-tion is due to transitions through the Mott�Hubbardgap.Introdu
tion of disorder leads to a qualitative
hange in the frequen
y behavior of 
ondu
tivity. Be-low, we mainly present the results obtained for thesame values of U and � that were used above to il-lustrate the evolution of the DOS.In Fig. 5, we show the real part of the opti-
al 
ondu
tivity in the 2D half-�lled Anderson�Hub-bard model for di�erent disorder strengths � and373
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Fig. 5. Real part of the dynami
 
ondu
tivity of thehalf-�lled Anderson�Hubbard model for di�erent val-ues of disorder � and U=2D = 1:25, typi
al for a 
or-related metal (in the absen
e of disorder). Inset: thesame, but in a wider frequen
y range. Thin dashedlines represent the ladder approximation resultsU = 1:25W , when the system is far from the MottMIT. Thin dashed lines in Fig. 5 (and in the following�gures) show the results of the �ladder� approximation.In the 2D model under 
onsideration, the 
ondu
tivityat zero frequen
y is always zero, and in 
ontrast tothe 3D 
ase [13℄, even for the weakest possible disor-der, the peak in the opti
al 
ondu
tivity is at a �nitefrequen
y. In the �ladder� approximation, whi
h doesnot 
ontain lo
alization 
orre
tions, the 
ondu
tivity is�nite at ! = 0. Opti
al transitions to the upper Hub-bard band at ! � U are pra
ti
ally unobservable inthese data; only in the inset to Fig. 5, where we showthe data for the wide frequen
y range, a weak maxi-mum on 
urves 1 and 2 
an be observed, 
orrespondingto transitions to the upper Hubbard band.In Fig. 6, we present the real part of the opti-
al 
ondu
tivity for di�erent disorder strengths � andU = 2W , typi
al for a Mott insulator. It 
an be seenfrom Fig. 6 that for small disorder, we are in the Mottinsulator phase (
urves 1 and 2 ), and with an in
reasein disorder in the absen
e of Anderson lo
alization (
f.the thin lines 
orresponding to the �ladder� approxima-tion), we would be entering the metalli
 phase. But inour model, lo
alization o

urs at in�nitesimal disorderand we are a
tually entering Anderson insulator phase,with the 
ondu
tivity ending to zero at zero frequen
y.Data in the frequen
y range 
orresponding to the lo
a-lization behavior �(!) / !2 of 
ondu
tivity are shown
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Fig. 6. Real part of the dynami
 
ondu
tivity of thehalf-�lled Anderson�Hubbard model for di�erent val-ues of disorder � and U=2D = 2, typi
al for Mottinsulator (in the absen
e of disorder). Curves 1 and 2
orrespond to a Mott insulator, and 
urves 3�6 
orre-spond to a 
orrelated Anderson insulator. Inset: lo
al-ization behavior of 
ondu
tivity. Thin dashed lines arethe ladder approximation resultsat the inset to Fig. 6 for 
urves 5 and 6, 
orrespond-ing to a large enough disorder. At small disorders, thefrequen
y region with the lo
alization behavior of the
ondu
tivity is exponentially small1) (whi
h is due tothe exponential in
rease in the lo
alization length atsmall disorder, 
f. Fig. 9) and is pra
ti
ally unobserv-able.The dependen
e of the opti
al 
ondu
tivity on U isillustrated in Fig. 7. The in
rease in U shifts the lo-
alization peak in the 
ondu
tivity to lower frequen
iesand leads to its narrowing. Apparently, this is relatedto the appropriate suppression of the quasiparti
le peakwidth in DOS. The value of 
ondu
tivity at the max-imum is independent of U . It is interesting to notethat for frequen
ies larger than the maximum position,the in
rease in U suppresses 
ondu
tivity, while for thefrequen
ies lower than the maximum position, the in-
rease in U enhan
es 
ondu
tivity (in a sense, playingagainst lo
alization).To 
on�rm the self-
onsisten
y of our approa
h to
ondu
tivity 
al
ulations, we 
on
lude this se
tion witha dis
ussion of the opti
al sum rule, whi
h relatessingle-parti
le and two-parti
le 
hara
teristi
s [36℄.1) This region 
orresponds to frequen
ies ! � !
 �� D3�2 =�Rlo
a �2 [30, 31℄.374
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Fig. 7. Real part of the dynami
 
ondu
tivity of thehalf-�lled Anderson�Hubbard model for di�erent val-ues of U and �=2D = 0:19. Thin dashed lines areladder approximation resultsTable. Che
k of the single-band opti
al sum rule inthe Anderson�Hubbard model. The opti
al integral isgiven in units of 2e2D=~�=2D �e2=2Pp �2"p=�p2xnp Wopt = 1R0 Re�(!) d!0:19 0.099 0.0980:25 0.099 0.0980:37 0.092 0.0910:5 0.081 0.082The single-band Kubo sum rule [37℄ for the dynami

ondu
tivity 
an be written asWopt = 1Z0 Re�(!) d! = �e22 Xp �2"p�p2x np; (20)where np is the single-parti
le momentum distributionfun
tion, determined by the intera
ting retarded ele
-tron Green's fun
tion GR(";p):np = � 1� 1Z�1 d" f(")ImGR(";p); (21)where f(") is the Fermi distribution.In Table, we show 
al
ulated values of the right-hand side and of the left-hand side of Eq. (20) forU = 1:5W . It is 
learly seen that opti
al sum rule (20)is ful�lled within our numeri
al a

ura
y.

21
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0:51:01:52:02:5 1243Metal
2 0:19
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Fig. 8. Dependen
e of the normalized opti
al integralof the Anderson�Hubbard model on U for di�erent val-ues of disorder �. Inset: a similar dependen
e on � fordi�erent values of U (U=2D = 1 (
urve 1 ), 1:5 (2 ),2 (3 ), 2:5 (4 )). Curves 1 and 2 pertain to a �
orre-lated metal� transforming into the Anderson insulator.Curves 3 and 4 are a Mott insulator, obtained as Uin
reases from �
orrelated metal� or Anderson insulatorvalueVery often, the opti
al sum rule is understood asthe equality of the opti
al integral Wopt to the �univer-sal� value of !2pl=8, where !pl is the plasma frequen
y,whi
h, stri
tly speaking, is not 
orre
t in the single-band 
ase; in this sense, we may speak of an opti
alsum rule �violation�. In fa
t, the opti
al integral de-pends on parameters of the model, e. g., on the Hub-bard intera
tion and disorder (Fig. 8). The in
rease inU signi�
antly suppresses the value of the opti
al in-tegral. The dependen
e on the disorder strength � isalso important; in parti
ular, under a disorder-indu
edtransition from the Mott to the Anderson insulator, weobserve a kind of dis
ontinuity of the opti
al integral(
urves 3 and 4 at the inset to Fig. 8).C. Lo
alization length and phase diagram ofthe 2D Anderson�Hubbard modelTo pro
eed, on the left axis in Fig. 9 we presentour data for the real part of the 
ondu
tivity at a �xedand su�
iently small frequen
y ! = 0:00005D plottedas a fun
tion of the disorder strength �. Cir
les showthe results of �ladder� approximation, and triangles,the results of the self-
onsistent theory of lo
alization375



E. Z. Ku
hinskii, N. A. Kuleeva, I. A. Nekrasov, M. V. Sadovskii ÆÝÒÔ, òîì 137, âûï. 2, 2010
321

245
3

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
∆/2D

0

1

2

3

4

5

6

7

8

9
σ(∆)

0

2

4

6

8

10

12

14

16

18
lg Rloc

Fig. 9. Left s
ale shows the dependen
e of 
ondu
tiv-ity on disorder � at the �xed frequen
y ! = 0:00005Dand U=2D = 1. Cir
les (
urve 1 ) � ladder approx-imation; triangles (
urve 2 ) � self-
onsistent theoryof lo
alization. Curve 3, pra
ti
ally 
oin
iding with theladder approximation results, is obtained from Drudeexpression (22). Stati
 
ondu
tivity for �nite samplesof sizes L = 108a (
urve 4 ) and L = 105a (
urve 5 ).Right s
ale shows the dependen
e of the lo
alizationlength logarithm on disorder � for an in�nite sample(
urve 1 ) and for �nite samples of sizes L = 108a(
urve 2 ) and L = 105a (
urve 3 )(we take U = 0 here). Curve 3, whi
h pra
ti
ally 
oin-
ides with the results of the �ladder� approximation, isobtained from the usual Drude expression�(!) = �(0) 
2
2 + !2 ; (22)where the stati
 
ondu
tivity is given by�(0) = e2N(0)D0 � e2~ "F2�
 ;with N(0) being the density of states at the Fermi level,D0 the 
lassi
al di�usion 
oe�
ient, and "F � D theFermi energy. The impurity s
attering rate was takenas 
 = �N(0)�2 � �2D�2:It 
an be seen that a noti
eable 
ontribution of lo
al-ization 
orre
tions to 
ondu
tivity (the 
lear di�eren
ebetween 
urve 2 and 
urves 1 and 3 ) appears only af-ter the 
ondu
tivity de
reases below the values of theorder of the �minimal� metalli
 
ondu
tivity �0 = e2=~(our data for 
ondu
tivity are a
tually normalized bythis value in all �gures). We see below that pre
isely inthis region, a kind of Anderson MIT (divergen
e of the

lo
alization length) o

urs in 2D systems of reasonable�nite sizes.On the right axis in Fig. 9, we show our data forthe logarithm of the lo
alization length 
al
ulated fromEq. (18) as a fun
tion of disorder for an in�nite sample(
urve 1 ) and for �nite samples with L = 108a andL = 105a (
urves 2 and 3 ). It is 
learly seen that thelo
alization length in
reases exponentially as the disor-der de
reases, but remains �nite in the in�nite 2D sam-ple, signifying the absen
e of the Anderson transition.In �nite samples, the lo
alization length diverges atsome 
riti
al disorder (depending on the system size),demonstrating the existen
e of an e�e
tive Andersontransition. It follows from Fig. 9 that this 
riti
al dis-order is a
hieved when the lo
alization length of anin�nite system be
omes 
omparable to the 
hara
teris-ti
 size of the sample: RL!1lo
 � L. We note that in ourapproa
h, in 
ontrast to the results in Ref. [15℄, the lo-
alization length is pra
ti
ally independent of U , whi
hleads to the independen
e of the 
riti
al disorder in 2Dfrom the 
orrelation strength U . A similar result2) wasobtained in our approa
h for 3D systems [13℄.On the left axis in Fig. 9, the disorder dependen
eof the stati
 
ondu
tivity for �nite samples of the sizesL = 108a and L = 105a (
urves 4 and 5 ) is shown.For �nite systems with small disorder, the stati
 
on-du
tivity is not zero (metal). It gradualy de
reases asthe disorder in
reases and be
omes zero at the same
riti
al value where the lo
alization radius diverges onapproa
h from the insulating phase in a �nite sample.The stati
 
ondu
tivity of �nite samples in our 
al-
ulations is pra
ti
ally independent of the 
orrelationstrength U . A rather signi�
ant di�eren
e between thevalues of stati
 
ondu
tivity and that of 
ondu
tivityat small but nonzero frequen
ies seen in Fig. 9 
omesfrom the exponential smallness of the frequen
y rangeof lo
alization behavior mentioned above.We now dis
uss our results for the phase diagram ofthe 2D half-�lled Anderson�Hubbard model, obtainedfrom extensive DMFT+� 
al
ulations of the DOS andthe analysis of the lo
alization length behavior in �nite2D systems. The general form of this phase diagramin the disorder�
orrelation (�; U) plane is shown inFig. 10.The dashed stripe in Fig. 10 
orresponds to the re-gion of an e�e
tive transition from the Anderson in-sulator to the �metalli
� phase. Its boundaries weredetermined by divergen
e of the lo
alization length in2) Our 
al
ulations of the lo
alization length for a 3D systemperformed after the publi
ation of Ref. [13℄ have demonstratedthat it is pra
ti
ally independent of the value of U .376
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Fig. 10. Phase diagram of the two-dimensional param-agneti
 Anderson�Hubbard model at zero temperature.The border of Mott insulator region U
2(�) and theborder of 
oexisten
e (hysteresis) region U
1(�) areobtained from the evolution of the density of states,and U�
2(�) is 
al
ulated from (24). The dashed stripe
orresponds to the narrow region where the Andersonmetal�insulator transition o

urs in �nite systems�nite samples with 
hara
teristi
 sizes L = 105a (upperboundary) and L = 108a (lower boundary) (
f. Fig. 9).We stress that a further in
rease in the system size,e. g., 10 times up to L = 109a, leads only to a pra
-ti
ally negligible downshift of the lower boundary (de-
rease in the 
riti
al disorder) of the dashed stripe inFig. 10.The dependen
e of U
2(�) obtained from the DOSbehavior determines the boundary for the Mott transi-tion and is de�ned by the disappearan
e of the quasi-parti
le peak in the DOS and by 
orrelation gap open-ing at the Fermi level (
f. Figs. 2, 4).In our previous work [13℄ on the 3D Anderson�Hubbard model, we proposed a simple explanation ofthe U
1;
2(�) dependen
e. Assuming that the 
ontrol-ling parameter of the Mott�Hubbard transition, givenby the ratio U
1;
2(�)=Weff (�) of the Hubbard inter-a
tion to the e�e
tive bandwidth (depending on disor-der), is a universal 
onstant (independent of disorder),we obtain U
1;
2(�)Weff (�) = U
1;
2(0)W ; (23)where Weff (�) is an e�e
tive bandwidth in the pres-en
e of disorder, 
al
ulated at U = 0 in self-
onsistentBorn approximation (5). In the 3D model [13℄, the de-penden
e of the 
riti
al 
orrelation strength on disorder

U
1;
2(�), obtained dire
tly from the evolution of theDOS, has shown a quite satisfa
tory agreement withthe qualitative dependen
e obtained from Eq. (23)3).In the 2D model under 
onsideration here, a solu-tion of Eq. (23) givesU�
1;
2(�) = U
1;
2(0)Weff (�)W == U
1;
2(0)�2�2W 2 ln�
+ 1
� 1�+ 
� ; (24)where 
 =q4 (�=W )2 + 1. However, unlike in the 3D
ase [13℄, the U
2(�) dependen
e obtained from theDOS evolution is 
learly di�erent from the qualitativedependen
e U�
2(�) (the dotted line in Fig. 10), deter-mined by Eq. (24). Probably, this is due to a signi�-
ant 
hange in the re
tangular form of the �bare� DOSwith an in
rease in the disorder �, whi
h is absent forthe semi-ellipti
 �bare� DOS used in the 3D 
ase inRef. [13℄.As we already noted, with de
rease of U from insu-lating phase Mott transition o

urs at U = U
1(�) << U
2(�) and the 
oexisten
e (hysteresis) region is ob-served between U
1(�) and U
2(�) 
urves on phasediagram Fig. 10. 5. CONCLUSIONWe have used the generalized DMFT+� approa
hto study basi
 properties of the disordered and 
or-related Anderson�Hubbard model. Our method pro-du
es a relatively simple interpolation s
heme betweentwo well-studied limits, the strongly 
orrelated Hub-bard model in the absen
e of disorder (DMFT andMott�Hubbard MIT) and the 2D Anderson insulatorin the in�nite system without ele
tron�ele
tron intera
-tions. It seems that the proposed interpolation s
hemere�e
ts all the qualitative features of the Anderson�Hubbard model, su
h as the behavior of the density ofstates and dynami
 
ondu
tivity. The general stru
tureof the phase diagram obtained in the DMFT+� ap-proximation is also in reasonable agreement with the re-sults of dire
t numeri
al simulations [16℄. At the sametime, the DMFT+� approa
h is rather 
ompetitive inthe sense of the amount of numeri
al work and allowsdire
t 
al
ulations of all the basi
 observable 
hara
ter-isti
s of the Anderson�Hubbard model.3) Further extensive 
al
ulations performed after the 
omple-tion of Ref. [13℄ have 
on�rmed a pra
ti
ally ideal agreementbetween these dependen
es.377
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hinskii, N. A. Kuleeva, I. A. Nekrasov, M. V. Sadovskii ÆÝÒÔ, òîì 137, âûï. 2, 2010We stress that an e�e
tive Anderson transition ob-tained here in the 
ase of �nite-size 2D systems is inno sense attributed to ele
troni
 
orrelations and alsofollows dire
tly from the self-
onsistent theory of lo
al-ization in the absen
e of 
orrelations.The main short
oming of the method used is thenegle
t of the interferen
e between disorder s
atteringand Hubbard intera
tion, whi
h leads to the indepen-den
e of the lo
alization length and 
riti
al disorder�
(in �nite 2D systems) from the 
orrelation strength U .The importan
e of this kind of interferen
e e�e
ts hasbeen known sin
e long ago [1, 5℄, although these 
an betaken into a

ount only in the 
ase of weak 
orrelationsand disorder. At the same time, the negle
t of the in-terferen
e e�e
ts is the key point of our DMFT+� ap-proa
h, whi
h allows obtaining rather simple and phys-i
ally 
lear interpolation s
heme and analyzing the lim-its of strong 
orrelations and disorder.Another drasti
 simpli�
ation is our assumption ofa nonmagneti
 (paramagneti
) nature of the groundstate of the Anderson�Hubbard model. The impor-tan
e of magneti
 (spin) e�e
ts in strongly 
orrelatedand disordered systems is obvious, as is the impor-tan
e of 
ompetition between di�erent kinds of mag-neti
 ground states [20℄.Despite these short
omings, our results seem ratherattra
tive and reliable, e. g., with respe
t to strongdisorder e�e
ts on the Mott�Hubbard transition andthe general form of the phase diagram at T = 0. Ourpredi
tions for the general behavior of the dynami
(opti
al) 
ondu
tivity and the disorder-indu
ed Mottinsulator to the e�e
tive �metal� transition 
an bedire
tly 
ompared with the existing and future experi-ments.We are grateful to Th. Prus
hke for providing uswith his e�e
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