Exciton–vibrational interaction of the Fröhlich type in quasi-zero-size systems

A. V. Fedorov and A. V. Baranov

S. I. Vavilov State Optical Institute, 199034 St. Petersburg, Russia
(Submitted 28 March 1996)

We derive analytic expressions for the matrix elements of the exciton–vibrational interaction of the Fröhlich type in spherical semiconducting crystals. The selection rules that allow for transitions involving LO-phonons between arbitrary excitonic states are established. We show that because of a three-dimensional spatial limitation, the exciton–phonon scattering in transitions between states with the same parity loses its forbidden nature. The size dependence of the interaction matrix elements is studied. We demonstrate that nanocrystals constitute a Jahn–Teller system and for certain sizes exhibit a vibrational resonance. We estimate the Huang–Rhee factor and find that it strongly depends on the size of the nanocrystal. On the basis of these results we calculate the form functions of multiphonon light absorption. The proposed method of calculating the exciton energy spectrum makes it possible to take into account the effect of a three-dimensional spatial constraint on electron–hole relative motion.

© 1996 American Institute of Physics. [S1063-7761(96)02509-7]

1. INTRODUCTION

In recent years, extensive experimental and theoretical research has been done in the field of quasi-zero-size structures. The reason for this is that as the linear dimensions of a semiconducting crystal diminish to a size of the order of the Bohr exciton radius, there emerges an exceptionally interesting object which, partially retaining the properties of the initial material, acquires features characteristic of molecules or impurity centers. The best studied manifestation of the three-dimensional spatial constraint (three-dimensional quantization levels) is not translationally invariant, e.g., Ref. 5. Depending on the ratio of the characteristic size R of the semiconducting nanostructure and the Bohr exciton radius, three cases are usually identifiable: the weak confinement, or excitonic, regime ($R > R_B$), the intermediate confinement regime ($R = R_B$), and the strong confinement regime ($R < R_B$). This paper deals with the first, for which it is still meaningful to speak of an exciton as a composite quasiparticle consisting of an electron and hole coupled by the Coulomb interaction. At the same time, in contrast to bulk material, the motion of an exciton in a quasi-zero-size structure is not translationally invariant, i.e., the wave-vector conservation law is not true here. More than that, because of three-dimensional confinement, the very concept of an exciton as a composite particle loses all meaning, and excitonic bands characteristic of the bulk material split into discrete size quantization levels. The lack of translational symmetry and the fact that there is size quantization lead to a considerable modification of the exciton–phonon interaction. In particular, in the best-studied nanostructures based on semiconductors with relatively high ionicity (A_1B_2, A_2B_3, and A_3B_4), the exciton–vibrational interaction of the Fröhlich type changes considerably. As a result the polar scattering of excitons by LO-phonons in transitions between excitonic states of the same parity (including intralevel transitions) loses its forbidden nature. Here the parity is related to the relative motion of the electron and hole.

The fact that the diagonal (adiabatic) part of the exciton–phonon interaction is nonzero and that the energy spectrum is discrete makes the nanostructure similar in some respects to a molecule or impurity center and allows a description of its optical properties that uses, after appropriate modifications, the models and methods developed by the theory of multiphonon transitions in local systems.

There have been many papers devoted to the polar interaction of the electron subsystem of quasi-zero-size structures with LO-phonons (see, e.g., Refs. 9–11), with the predominant role of this interaction in resonant Raman and hyper-Raman scattering of light repeatedly confirmed in experiments.12–14 Obviously, no less important is its role in absorption and luminescence. However, the exciton–phonon interaction of the Fröhlich type in the weak confinement regime has not been thoroughly studied and requires further investigation.

A fact of special interest is that quasi-zero-size systems exhibit, as will be shown below, a Jahn–Teller effect induced by LO-phonons. Under certain conditions there is vibrational resonance between the excitonic states, which makes possible the formation of tightly bound exciton–phonon complexes.14,15

2. POLAR INTERACTION OF EXCITONS WITH LO-PHONONS IN QUANTUM DOTS

We restrict our discussion to the polar scattering of excitons by LO-phonons in quantum dots (i.e., spherical nanocrystals), which serve as an object of investigation in most experiments.16 We assume that the potential of a quantum dot has infinitely high walls. In many cases this approximation is justified for semiconducting nanocrystals embed-
ded in an insulator matrix. We also ignore surface optical modes and the relationship between LO-phonons and TO-phonons. Then the potential \(\Phi(r) \) of the macroscopic field generated by LO-phonons in a spherical nanocrystal can be written as follows:

\[
\Phi(r) = \sum_{n,m,l} f_{n,m,l} \int \frac{d^3 \mathbf{r}}{4\pi} \frac{Y_{nm}(\theta, \phi)}{r} \psi_{n,m,l}(r) r \sin \theta,
\]

where \(R \) is the quantum-dot radius, \(j_{n}(x) \) and \(Y_{nl}(\theta, \phi) \) are the spherical Bessel function and spherical harmonics, \(\xi_{n,m} \) is the \(n \)th root of the equation \(j_{n}(\xi_{n,m}) = 0 \), and \(f_{n,m} \) are the creation and annihilation operators of an LO-phonon of the \(\{n|m\} \) mode with frequency \(\omega_{n,m} \); \(l \) and \(m \) are the angular momentum and its projection, and the normalization factor \(f_{n,l} \) is given by

\[
f_{n,m} = \frac{1}{\xi_{n,m} j_{n}(\xi_{n,m})} \left[\frac{4\pi \hbar^{2} \omega_{n,m}^{2}}{e_{0} R} \right]^{1/2},
\]

with \(e_{0} \) and \(e_{0} \) the high- and low-frequency dielectric constants of the bulk material. According to Refs. 17 and 18, the exciton potential energy is

\[
V = -e \Phi(r_{e}) - \Phi(r_{h}),
\]

where \(r_{e} \) and \(r_{h} \) are the radius vectors of the electron and hole, and hence the exciton–phonon interaction operator has the form

\[
H_{ex-LO} = \sum_{v_{1},v_{2}} \sum_{n_{1},n_{2}} \sum_{m_{1},m_{2}} \sum_{l_{1},l_{2}} \sum_{n_{1},n_{2}} \sum_{m_{1},m_{2}} \sum_{l_{1},l_{2}} \left\langle v_{1}, n_{1}, m_{1}, l_{1} \mid v_{2}, n_{2}, m_{2}, l_{2} \right\rangle \left\langle v_{1}, n_{1}, m_{1}, l_{1} \mid \psi_{v_{1}} \right\rangle \psi_{n_{1}, m_{1}, l_{1}}(x) \psi_{n_{2}, m_{2}, l_{2}}(x)
\]

The quantities \(b_{v_{1}} \) and \(b_{v_{2}} \) are the exciton creation and annihilation operators in state \(v_{1} \) and the label \(n_{1}, m_{1}, l_{1}, n_{2}, m_{2}, l_{2} \) stands for the set of quantum number of an excitonic state, \(\{n_{1}', n_{2}', m_{1}', l_{1}', m_{2}', l_{2}'\} \), where the primed quantities characterize the motion of the exciton as a whole, and the unprimed, the relative motion of the electron and hole.

We assume that the exciton wave function is the product of the wave functions of relative and translational motions:

\[
\psi_{n_{1}, m_{1}, l_{1}}(x) = \phi_{n_{1}, m_{1}, l_{1}}(x) \psi_{n_{1}, m_{1}, l_{1}}(X),
\]

\[
\chi_{n_{2}, m_{2}, l_{2}}(x) = \phi_{n_{2}, m_{2}, l_{2}}(x) \psi_{n_{2}, m_{2}, l_{2}}(X),
\]

(5)

where \(\phi_{n_{1}, m_{1}, l_{1}} \) and \(\phi_{n_{2}, m_{2}, l_{2}} \) are the effective electron and hole waves.

Under fairly general conditions, the matrix elements of the exciton–phonon interaction can easily be calculated if we go from the coordinates \(r_{e} \) and \(r_{h} \) to the coordinates \(x \) and \(X \):

\[
V_{\text{ex-LO}} = -\frac{e^{2}}{4\pi \varepsilon_{0}} \delta_{\mu, n_{1}} \sum_{\nu_{1}} \psi_{\nu_{1}}^{\dagger}(x) \psi_{\nu_{1}}(X) \int \frac{d^{3} \mathbf{r}}{R} \frac{Y_{nm}(\theta, \phi)}{r} \psi_{n,m,l}(r) r \sin \theta,
\]

(6)

with \(1 \leq \eta \leq 2 \).

(7)

The quantities \(m_{e} \) and \(m_{h} \) are the effective electron and hole masses.

The exciton wave function is the product of the wave functions of relative and translational motions:

\[
\Psi_{v_{1}}(r_{e}, r_{h}) = \phi_{v_{1}}(r_{e}) \phi_{v_{1}}(r_{h}),
\]

\[
\chi_{v_{2}}(r_{e}, r_{h}) = \phi_{v_{2}}(r_{e}) \phi_{v_{2}}(r_{h}),
\]

(8)

Here \(\phi_{v_{1}}(r_{e}) \) and \(\phi_{v_{2}}(r_{h}) \) are the Coulomb–Gordan coefficients with the phases defined in accord with Ref. 19. Combinations of Coulomb–Gordan coefficients completely determine the selection rules for exciton–exciton transitions involving LO-phonons in a quantum dot. The quantities symmetric in pairs of lower indices,

\[
J_{< \nu_{1}}^{\nu_{2}} = 2 \int \frac{d^{3} \mathbf{r}}{R} \frac{Y_{nm}(\theta, \phi)}{r} \phi_{v_{1}}(r_{e}) \phi_{v_{1}}(r_{h}) J_{v_{2}}(x) J_{v_{2}}(x),
\]

(9)

are independent of \(R \) and are related to the radial part of the exciton wave functions of translational motion, which according to Refs. 1, 2, and 4 is proportional to

\[
J_{< \nu_{1}}^{\nu_{2}} = \frac{1}{2} \int_{0}^{\infty} \frac{dx}{x} \int \frac{d^{3} \mathbf{r}}{R} \frac{Y_{nm}(\theta, \phi)}{r} \phi_{v_{1}}(r_{e}) \phi_{v_{1}}(r_{h}) J_{v_{2}}(x) J_{v_{2}}(x),
\]

(10)

with \(1 \leq \eta \leq 2 \).

(11)
cannot be solved exactly, since it is actually a three-body problem in which the well acts as the third particle. When expressed in terms of coordinates x and X, the quantum-well potential has an extremely complicated form $U(x+\mathbf{p}_h, x-\mathbf{p}_e)$, which cannot be expressed solely in terms of R and does not allow for separation of variables.

Thus, the eigenfunctions of the problem of an exciton in a quantum dot cannot generally be represented by the product (5). One way to avoid this difficulty in the weak confinement regime is to use a "pseudopotential" instead of $U(x+\mathbf{p}_h, x-\mathbf{p}_e)$, and choose it according to considerations of physical reason and maximum simplicity. This leads to uncertainty in the upper limit of integration in (10).

Indeed, while the inequality $|X| < R$ can serve as the natural (but somewhat overly restrictive) boundary condition on the position of the center of mass, for the distance between the electron and hole we can specify only the region where the boundary is located, $R < |X| < 2R$. The lower limit in this double inequality corresponds to the case in which one of the particles comprising the exciton is at the center of the quantum dot, while the upper limit is attained when the electron and hole are located at opposite ends of the diameter of the quantum dot.

The pseudopotential $U(X)$ (see Ref. 1) is still used in describing the excitonic regime. It allows for confinement only in translational exciton motion, and its sole (but extremely important) advantage is its exceptional simplicity. The problem of an exciton moving in the pseudopotential $U(X)$ can be solved exactly, and its eigenfunctions are given by (5). Here the wave functions $\Psi_{nl}(X)$ correspond to the size quantization levels that emerge as a result of the splitting of excitonic bands, and the wave functions $\phi_{nl}(x)$ are the hydrogenlike wave functions of the Wannier exciton.

The energy spectrum of an exciton in the pseudopotential $U(X)$ can be written as follows:

$$E_{nl} = E_0 + \left(\frac{n^2}{\mu M} + \frac{\mu \epsilon}{d} \right),$$

where $d = R/R_x$, $\mu = m_e m_h / M$, $R_x = \mu \epsilon / 2 e^2 \hbar^2$, is the exciton rydberg, and E_0 is the band gap of the bulk semiconductor. Bearing in mind that $d = R/R_x \gg 1$ and that the wave functions of relative motion have the form (14), we can replace the upper limit of the integral in (10) with ∞. The result is a set of simple relationships for the matrix elements of the exciton-phonon interaction, which can be used for doing order-of-magnitude estimates and illustrating the qualitative aspects of this interaction.

Before we begin to analyze the matrix elements (8) of the exciton-phonon interaction, let us briefly examine the quantum-dot pseudopotential $U(X) + U(p_h)$, which, we believe, provides a better description of the exciton energy spectrum in the weak confinement regime, since the second term in (16) allows for the effect of the spatial constraint on relative electron–hole motion.

The eigenvalue problem for an exciton in the pseudopotential (16) can be solved exactly. As before, the wave functions have the form (5), with the $\Psi_{nl}(X)$ coinciding with the wave functions for translational motion in the pseudopotential $U(X)$, while the radial part $\phi_{nl}(x)$ is now given by:

$$\phi_{nl}(x) = \exp \left(- \frac{x}{n R_x} \right)$$

and if the region of localization of these wave functions, $n R_x$, is much smaller than ηR.

All this significantly limits the applicability of the approach, particularly in describing multiquantum processes, where one must allow for a large number of intermediate states.

The energy spectrum of an exciton in the pseudopotential $U(X)$ can be written as follows:

$$E_{nl} = E_0 + \left(\frac{n^2}{\mu M} + \frac{\mu \epsilon}{d} \right) \frac{\mu \epsilon}{2 e^2 \hbar^2},$$

where $d = R/R_x$, $\mu = m_e m_h / M$, $R_x = \mu \epsilon / 2 e^2 \hbar^2$ is the exciton rydberg, and E_0 is the band gap of the bulk semiconductor. Bearing in mind that $d = R/R_x \gg 1$ and that the wave functions of relative motion have the form (14), we can replace the upper limit of the integral in (10) with ∞. The
We have thus obtained the entire energy spectrum for both positive and negative values of $\Sigma_{\pm j}(d)$. Let us list its main features related to the effect of confinement on relative electron–hole motion.

First, for any fixed value of d, the number of levels with a negative $\Sigma_{\pm j}(d)$ is finite, progressively decreasing as d decreases, and there exists a critical value d_c at which levels of this type completely disappear. The pattern of disappearance is such that as d decreases, negative energies tend to zero and then change sign, i.e., the levels are pushed out of the Coulomb potential well, with the process initiated by confinement. Second, confinement lifts the degeneracy in the orbital quantum momentum l_i of relative motion, a process inherent in the pure Coulomb problem (15).

A more detailed discussion of the exciton motion in the pseudopotential (16) is beyond the scope of the present paper. We note, however, that the features of such motion listed above agree with the results of Ref. 3 obtained by direct numerical calculation of the energy spectrum of the electron–hole pair in the initial potential (12) of a quantum dot.

We now discuss in more detail the matrix elements (8) of the exciton–phonon interaction for several low-energy excitonic states, which under optical excitation exhibit the features induced by confinement in the experimental spectra of systems with quantum dots most vividly. To analyze these matrix elements we use the exciton wave functions related to the pseudopotential $U(X)$. Of special interest are the excitonic states with $l_1 = l_2 = 0$, whose excitation is possible in one-photon dipole-allowed transitions.

If we introduce the notation $v_n(n'; n)$, from (8) we easily find that

$$v_{n1}(n'; n) = \frac{e \hbar \omega}{\sqrt{4\pi}} \frac{\alpha_{n'1}}{\alpha_{n1}} e^{i\chi_{n_1}} e^{-i\chi_{n'}},$$

Equation (23) implies that the matrix elements between states of type $v_n(n'; n)$ are nonzero only if completely symmetric phonons (i.e., with $l = m = 0$) participate in the transition. Equations (25)–(27) show that these matrix elements are proportional to the effective mass difference, $m_e - m_h$, i.e., the part of the exciton–phonon interaction defined by (23) is related to the difference in the extent of spatial localization of the electron and hole in the exciton.

Since the magnitude of the exciton–phonon interaction strongly depends on the specific parameters of the quantum dot material, all further estimates and illustrative diagrams deal with CuBr: $m_e = 0.28m_0$, $m_h = 1.4m_0$ (the effective mass of heavy holes), $R_e = 1.25$ nm, $\epsilon_0 = 8.6$, $\epsilon = 4.6$, and $\omega_{LO} = 21.5$ meV. The reason why we chose this semiconductor is that secondary multiphonon emission in the two-photon resonant stationary excitation in the $Z_{1,2}$ band of an exciton was first discovered in a system of quantum dots with an average radius $R_0 = 3.2$ nm manufactured from this material (15).

Figure 1 depicts the size dependence of the absolute value of the diagonal matrix elements $V_{n1}(n; n)$ and $V_{n1}(n; n')$, which determine the scattering by a completely symmetric phonon (100). These quantities and similar ones (for phonons $n, 0, 0$ with $n > 1$) comprise the Huang–Rees factor, which plays an important role in multiphonon absorption, luminescence, and resonant Raman and hyper-Raman scattering of light. A similar dependence for the off-diagonal matrix elements $V_{n1}(n; n')$ and $V_{n1}(n; n'')$ is depicted in Fig. 1b. Such quantities determine the lifetime of
FIG. 2. The matrix elements of the interaction of an exciton with completely symmetric phonons as functions of the phonon quantum number \(n \) for a quantum dot of radius \(R = 2.56R_\text{H}, \) (a) (the diagonal part of the interaction) \(\Delta \) corresponds to \(V_{\text{exc}}^{(1,1)}(0) \) to \(V_{\text{exc}}^{(1,1)}(0) \) and \(V_{\text{exc}}^{(1,1)}(0) \) to \(V_{\text{exc}}^{(1,1)}(0) \), and (b) (the off-diagonal part of the interaction) \(\Delta \) corresponds to \(V_{\text{exc}}^{(1,1)}(0) \) and \(V_{\text{exc}}^{(1,1)}(0) \). The parameters of the material are those of CuBr.

excitonic levels and contribute to resonant Raman and hyper-Raman scattering of light. Figure 1 shows that the size dependence of the exciton-phonon interaction possesses a structure determined by the factor \(J_{\text{ex}}^{(1,1)}R_n \), which is related to the hydrogenlike wave functions. However, there is no real sense in discussing this structure because it is situated in the range of quantum-dot sizes where the spatial constraint on the relative electron-hole motion must be taken into account. Theoretically, this can be done if in calculating the matrix elements we use the system of wave functions (17). A fact that can be considered firmly established is that as the quantum-dot size decreases and reaches the intermediate confinement region, the amplitudes of the transition matrix elements between excitonic states of type \(\nu_{\text{e}}(n, \nu_{\text{h}}) \) increase. Moreover, as \(R \to R_\text{H} \), which means passing to the case of a bulk semiconductor, the matrix elements under discussion vanish like \(R^{-5/2} \), as expected.

Figure 2 illustrates the magnitude of the interaction of an exciton with completely symmetric phonons as a function of the phonon quantum number \(n \). We see that as \(n \) grows, the amplitude of the corresponding matrix elements sharply decreases, since its asymptotic behavior has the form of \(n^{-8} \).

Using these results, we can answer the long-debated question about the size dependence of the Huang–Rees factor (see, e.g., Ref. 9). Let us estimate the Huang–Rees factor

\[
S_{\text{H}-\text{R}} = \sum_{\text{mm}} \frac{1}{(h\nu_{\text{L}})^2} |V_{\text{mm}}(\nu_{\text{e}}, \nu_{\text{h}})|^2 \text{ (28)}
\]

restricting our discussion, for the sake of definiteness, to the ground state \(\nu_{\text{e}}(1,1) \) of an exciton in a quantum dot. To calculate

\[
S_{\text{H}-\text{R}}(\nu_{\text{e}}(1,1)) = \sum_{\text{mm}} \frac{1}{(h\nu_{\text{L}})^2} |V_{\text{mm}}(\nu_{\text{e}}(1,1))|^2 \text{ (29)}
\]

exactly, we must know the mode composition of the natural vibrations of the spherical nanocrystal as a function of \(R \), i.e., find the frequencies \(\omega_{\text{L}}^{(1,1)} \) and the number \(N_{\text{L}}(R) \) of distinct completely symmetric modes.

Such a calculation constitutes a problem in its own right. Hence we estimate the upper \(S_{\text{up}}^{(1,1)} \) and lower \(S_{\text{low}}^{(1,1)} \) bounds on (29), replacing \(\omega_{\text{L}}^{(1,1)} \) by an average frequency \(\omega_{\text{L}}^{\text{av}} \) determined, say, from experiments in resonant Raman scattering of light. The bound \(S_{\text{up}}^{(1,1)} \), obviously, corresponds to the case in which there is only one completely symmetric vibration with \(n = 1 \): and \(S_{\text{low}}^{(1,1)} \) can be obtained if we assume that all \(\text{LO} \) vibrations of the quantum dot are completely symmetric.

As is known, the number \(N_{\text{L}}^{(1,1)} \) of \(\text{LO} \)-modes in a diatomic crystal is equal to the number of unit cells in the crystal’s volume. This immediately suggests that for a quantum dot \(N_{\text{L}}^{(1,1)}(R) = 4\pi R^3/V_c \), where \(V_c \) is the unit cell volume. Then the upper bound on (29) can be obtained by putting \(N_{\text{L}}(R) = N_{\text{L}}^{(1,1)}(R) \).

Figure 3 depicts the upper and lower bounds on the Huang–Rees factor (29) as functions of the quantum-dot radius. The calculation was done for the parameters of CuBr: \(V_c = 0.183 \text{ nm}^3 \). We see that as \(R \) increases, so does the difference between \(S_{\text{up}}^{(1,1)} \) and \(S_{\text{low}}^{(1,1)} \), but even for \(d = 5.0 \) this difference does not exceed 30%, although in calculating \(S_{\text{up}}^{(1,1)} \) we allowed for 5580 terms in (29). Note that allowing for the first two terms in (29), i.e., taking into account only two completely symmetric modes, diminishes the difference between \(S_{\text{H}-\text{R}}^{(1,1)} \) and \(S_{\text{up}}^{(1,1)} \) at \(d = 5.0 \) to 0.3%.

Thus, we conclude that the Huang–Rees factor strongly depends on the size of the nanocrystal and, over the range of

FIG. 3. The upper and lower bounds on the Huang-Rees factor as functions of the quantum-dot radius. The parameters of the material are those of CuBr: the solid curve corresponds to \(S_{\text{up}}^{(1,1)} \), and the dashed curve to \(S_{\text{low}}^{(1,1)} \).
sizes most interesting from the experimenter's viewpoint, can be approximated to high accuracy by several terms in (29). For order-of-magnitude estimates Eq. (30) is sufficient.

Obviously, these features of the Huang–Rees factor are related to the aforementioned asymptotic behavior of the diagonal matrix element of the exciton–phonon interaction as functions of the quantum-dot radius \(R \) and the phonon quantum number \(n \).

Note that according to Ref. 9, the Huang–Rees factor is independent of \(R \). We believe, however, that this assumption is invalid and that the reason for such an erroneous conclusion lies in the fact that Klein et al. chose a model exciton with an infinitely heavy hole and a fixed position of the center of mass, a model proposed by Merlin et al. for describing multiphonon processes in bulk materials and unsuitable for quantum dots.

Another important class of matrix elements of the exciton–phonon interaction describes transitions between excitonic states of the type \(\psi_{a}(n', l', m') \) and states that cannot be excited in one-photon dipole-allowed transitions. For the sake of definiteness, we take the matrix elements that link the ground excitonic state \(\psi_{a}(1,1) \) and states of type

\[
V_{a1m} \left(\frac{\psi_{a}(n', l', m')}{\psi_{a}(1,1)} \right) = \frac{e\hbar \omega}{\sqrt{4\pi}} \delta_{m', m} \delta_{\mu, 0} \frac{\text{det}\, C_{n',1,0,1,0,0}}{R^{n+1}}.
\]

where we have dropped the subscript \(i \) for the sake of simplicity. We see that the phonons participating in the given transitions are those whose angular momentum \(l \) and its projection \(m \) coincide with the corresponding quantum numbers of the final excitonic states.

The matrix elements (31) are interesting because they describe two important effects associated with vibrational resonance of the initial and final excitonic states. Indeed, if the quantum dot has a radius \(R \) such that the energy gap between the levels \(\psi_{a}(n', l', m') \) and \(\psi_{a}(1,1) \) is close to the phonon energy \(\hbar \omega \), or

\[
R = R_{nt} \sqrt{\frac{R_{het}}{R_{het}^{2} + (n_{0} - n_{0})^{2}}}, \tag{32}
\]

the exciton–vibrational interaction is resonant, and even for a moderate value of the matrix element leads to renormalization of the vibrational frequency and formation of an exciton–phonon complex, as happens in bulk materials.

The same resonance allows for the possibility of double optical–vibrational resonance occurring in one-phonon transitions when the photon energy \(h\omega \) is close to the energy necessary for producing an exciton in the ground state.

Figure 4a depicts the size dependence of the absolute value of the matrix elements

\[
V_{a1m} \left(\frac{\psi_{a}(11m')}{\psi_{a}(1,1)} \right)
\]

for \(n = 1, 2 \), which describe transitions involving threefold degenerate phonons \([11m]\) and \([21m]\). We see that over the important range of quantum-dot sizes,

\[
V_{a1m} \left(\frac{\psi_{a}(11m')}{\psi_{a}(1,1)} \right) \approx \frac{e\hbar \omega}{\sqrt{4\pi}} \delta_{m', m} \delta_{\mu, 0} \frac{\text{det}\, C_{11,1,0,1,0,0}}{R^{3+n}}.
\]

In conclusion we examine the exciton–phonon interaction of the Fröhlich type (Eq. (8)) from the viewpoint of the Jahn–Teller effect. This effect occurs only if the excitonic state is degenerate. For the sake of simplicity we restrict our discussion to the threefold degenerate state \(\psi_{a}(11m') \). Other cases can be treated by reasoning along similar lines. Then, according to (8), the properties of the Clebsch–Gordan coefficients suggest that an exciton in the given state can interact with completely symmetric phonons \([a00]\) and with fivefold degenerate phonons \([a2m]\).

In the first case the matrix elements (8) are diagonal and proportional to the identity matrix, and in the second case the matrix elements (8) are orthogonal and proportional to the identity matrix

\[
V_{a1m} \left(\frac{\psi_{a}(11m')}{\psi_{a}(1,1)} \right) = \frac{e\hbar \omega}{\sqrt{4\pi}} \delta_{m', m} \delta_{\mu, 0} \frac{\text{det}\, C_{11,1,0,1,0,0}}{R^{3+n}}.
\]

FIG. 4. (a) The size dependence of the exciton–phonon interaction matrix elements \(V_{a1m} \left(\frac{\psi_{a}(11m')}{\psi_{a}(1,1)} \right) \), which describe a possible vibrational resonance with a \([11m]\) phonon node (solid curve) and a \([21m]\) phonon node (dashed curve); (b) the size dependence of the reduced matrix elements of the Jahn–Teller interaction, \(V_{a00} \left(\frac{\psi_{a}(11m')}{\psi_{a}(1,1)} \right) \), with a phonon of mode \([10m]\) (solid curve) and a phonon of mode \([20m]\) (dashed curve). The parameters of the material are those of CuBr.

\[
V_{a1m} \left(\frac{\psi_{a}(11m')}{\psi_{a}(1,1)} \right) = \frac{e\hbar \omega}{\sqrt{4\pi}} \delta_{m', m} \delta_{\mu, 0} \frac{\text{det}\, C_{11,1,0,1,0,0}}{R^{3+n}}.
\]
Thus, as expected, completely symmetric phonon modes are inactive in the Jahn–Teller effect. The situation is dramatically different for the interaction with \((n_2m)\) phonons, where the matrices \(W\) have the following form:

\[
\begin{align*}
\hat{W}_2 & = \hat{W}^{2 \dagger} = \sqrt{\frac{2}{3}} \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}, \\
\hat{W}_1 & = \hat{W}^{1 \dagger} = \sqrt{\frac{2}{3}} \begin{pmatrix}
0 & -1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}, \\
\hat{W}_0 & = \sqrt{\frac{2}{3}} \begin{pmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{pmatrix}.
\end{align*}
\]

The rows \(m_1\) and columns \(m_1\) in \((35)\) are numbered \(1,0,\) and \(-1\).

From \((34)\) and \((35)\) we see that the \((n_2m)\) phonons are active in the Jahn–Teller effect and that the emerging problem can be reduced to the so-called \(T\&d\)-problem, known from the theory of vibronic interactions in molecular and impurity systems.\(^{26}\) Without going into details, we merely note that as a result of the dynamic Jahn–Teller effect there emerges an exciton–phonon complex with a many-sheeted and multiminimum vibrational adiabatic potential, and that the initial threefold degenerate excitonic state splits.

Figure 4b depicts the size dependence of the absolute values of the exciton–phonon interaction matrix elements \((34)\) (the factors of the matrices \(\hat{W}_n\) describing the interaction with \([12m]\) and \([22m]\) phonons. We see that the amplitudes of these Jahn–Teller matrix elements and the amplitudes of \((23)\) and \((31)\) are of the same order of magnitude at equal values of the phonon quantum number \(n\) (see Figs. 1a and 4a).

At first glance it might seem that it is difficult to spot in experiments the Jahn–Teller effect considered here, since one-photon transitions into the excitonic states \(s_\lambda(11m)\) are forbidden in the dipole approximation. However, these states are accessible in two-photon excitation, and furthermore, when the excitonic ground state is in the aforementioned resonance with \(s_\lambda(11m)\), the Jahn–Teller effect is also exhibited by the one-photon spectra of quantum dots.

3. MULTIPHONON ABSORPTION OF LIGHT IN QUANTUM DOTS

We illustrate the above results with multiphonon light absorption involving one-photon excitation of the excitons. As noted earlier, in the weak confinement regime the diagonal part of the exciton–LO-phonon interaction is nonzero. Its contribution to multiphonon absorption or luminescence can be estimated by employing the form functions of the corresponding spectra.

\[
F(\Delta) = \frac{1}{\alpha} \sum \frac{1}{\alpha_1(\alpha_1)} \text{exp}(\text{coth } \beta) \left\{ \frac{2\alpha_1 s_\alpha(\alpha_1) E_x E_y + \alpha_1 s_\alpha(\alpha_1)}{\alpha_1 E_y^2} \right\} + \text{coth } \beta, \quad (36)
\]

where

\[
\Delta = \frac{\hbar \omega - E_x E_y}{\hbar \omega c}, \quad (37)
\]

is the frequency of the light, \(\beta = \hbar \omega c / 2T\), \(T\) is the temperature in energy units, \(I(x)\) is the modified Bessel function, and \(E_x^0\) is defined in \((15)\).

In our model and in the dipole approximation, only excitonic states with \(I_1 = 1, I_0 = 0\) can be excited in one-photon transitions. When an exciton interacts with a single vibrational mode, the form function of the absorption spectrum has the form

\[
F(\Delta) = \frac{1}{\alpha} \sum \frac{1}{\alpha_1(\alpha_1)} \text{exp}(\text{coth } \beta) \left\{ \frac{2\alpha_1 s_\alpha(\alpha_1) E_x E_y + \alpha_1 s_\alpha(\alpha_1)}{\alpha_1 E_y^2} \right\} + \text{coth } \beta, \quad (36)
\]

where

\[
\Delta = \frac{\hbar \omega - E_x E_y}{\hbar \omega c}, \quad (37)
\]

is the frequency of the light, \(\beta = \hbar \omega c / 2T\), \(T\) is the temperature in energy units, \(I(x)\) is the modified Bessel function, and \(E_x^0\) is defined in \((15)\).

In our model and in the dipole approximation, only excitonic states with \(I_1 = 1, I_0 = 0\) can be excited in one-photon transitions. When an exciton interacts with a single vibrational mode, the form function of the absorption spectrum has the form

\[
F(\Delta) = \frac{1}{\alpha} \sum \frac{1}{\alpha_1(\alpha_1)} \text{exp}(\text{coth } \beta) \left\{ \frac{2\alpha_1 s_\alpha(\alpha_1) E_x E_y + \alpha_1 s_\alpha(\alpha_1)}{\alpha_1 E_y^2} \right\} + \text{coth } \beta, \quad (36)
\]

where

\[
\Delta = \frac{\hbar \omega - E_x E_y}{\hbar \omega c}, \quad (37)
\]

is the frequency of the light, \(\beta = \hbar \omega c / 2T\), \(T\) is the temperature in energy units, \(I(x)\) is the modified Bessel function, and \(E_x^0\) is defined in \((15)\).

In our model and in the dipole approximation, only excitonic states with \(I_1 = 1, I_0 = 0\) can be excited in one-photon transitions. When an exciton interacts with a single vibrational mode, the form function of the absorption spectrum has the form

\[
F(\Delta) = \frac{1}{\alpha} \sum \frac{1}{\alpha_1(\alpha_1)} \text{exp}(\text{coth } \beta) \left\{ \frac{2\alpha_1 s_\alpha(\alpha_1) E_x E_y + \alpha_1 s_\alpha(\alpha_1)}{\alpha_1 E_y^2} \right\} + \text{coth } \beta, \quad (36)
\]

where

\[
\Delta = \frac{\hbar \omega - E_x E_y}{\hbar \omega c}, \quad (37)
\]

is the frequency of the light, \(\beta = \hbar \omega c / 2T\), \(T\) is the temperature in energy units, \(I(x)\) is the modified Bessel function, and \(E_x^0\) is defined in \((15)\).

In our model and in the dipole approximation, only excitonic states with \(I_1 = 1, I_0 = 0\) can be excited in one-photon transitions. When an exciton interacts with a single vibrational mode, the form function of the absorption spectrum has the form

\[
F(\Delta) = \frac{1}{\alpha} \sum \frac{1}{\alpha_1(\alpha_1)} \text{exp}(\text{coth } \beta) \left\{ \frac{2\alpha_1 s_\alpha(\alpha_1) E_x E_y + \alpha_1 s_\alpha(\alpha_1)}{\alpha_1 E_y^2} \right\} + \text{coth } \beta, \quad (36)
\]

where

\[
\Delta = \frac{\hbar \omega - E_x E_y}{\hbar \omega c}, \quad (37)
\]
equivalent quantum dots under identical conditions, which
means that inhomogeneous broadening in not taken into ac-

Note that Eq. (36) describes absorption by a system of
quantum dots with allowance for both
electron-hole motion. The system of the exciton wave func-
tions in such a potential makes it possible to study the non-
trivial size dependence of the exciton–phonon interaction
mentioned in Sec. 2 in greater detail (Fig. 1). Preliminary
estimates have revealed that the effect of confinement on the
relative motion enhances the role that excited excitonic states
play in the formation of the optical spectra of quantum dots.
For instance, the contributions of the excitonic states with
the principal quantum number \(n_1 \) of relative motion to
the multiphonon absorption form function (36) are no longer
proportional to \((n_1)^{-3} \).

Below we list the results of our work.

a) We have derived analytic expressions for the exciton–
vibrational interaction of the Fröhlich type in quantum dots
in the weak confinement regime, and have established the
selection rules for transitions between any excitonic levels. It
has been found that because of three-dimensional confine-
ment, the exciton–phonon interaction in transitions between
states with the same parity (related to the relative electron–
hole motion) loses its forbidden nature.

b) We have studied the size dependence of the exciton–
phonon interaction matrix elements that describe the transi-
tions between the lowest exciton levels. It has been estab-
lished that the amplitude of the matrix elements sharply
decreases with increasing phonon quantum number \(n \). This
makes it possible to use only a small number of vibrational
modes, for example, in studying the cross sections and exci-
tation profiles of resonant Raman and hyper-Raman scatter-
ing and in interpreting the corresponding experimental data.

c) We have estimated the Huang–Rees factor, which
plays an important role in various multiphonon processes. It
has been established that this factor strongly depends on the
quantum-dot radius. On the basis of these results we have
calculated the form function of the multiphonon absorption
of light by a system of quantum dots with allowance for both
homogeneous and inhomogeneous broadening.

d) We have shown that essentially quantum dots consti-
tute a Jahn–Teller system. Moreover, under certain condi-
tions, vibrational resonance between excitonic states can oc-

4. CONCLUSION

In calculating the matrix elements of the exciton–
phonon interaction we assumed that the potential of a quan-
tum dot has infinitely high walls, and ignored the relation-
ship between excitons and surface vibrational modes. But
even without these restrictions the structure of (8) is the
same. As before, the matrix elements are linear combinations
of products of six Clebsch–Gordan coefficients determining
the selection rules in spherically shaped nanocrystals.

At the same time, the analytic expressions for the weight
factors, which specify the magnitude of the exciton–phonon
interaction, differ considerably from (9) and (10). Therefore,
it would be interesting to generalize the results of the present
paper to these cases. In particular, allowing for surface
modes could prove to be important in problems of vibra-
tional and double optical–vibrational resonance and in the
Jahn–Teller effect.

Another promising area in studies of the exciton–
phonon interaction is the use of the pseudopotential (16),
which takes confinement into account in the relative
electron-hole motion. The system of the exciton wave func-
tions in such a potential makes it possible to study the non-
trivial size dependence of the exciton–phonon interaction
mentioned in Sec. 2 in greater detail (Fig. 1). Preliminary
estimates have revealed that the effect of confinement on the
relative motion enhances the role that excited excitonic states
play in the formation of the optical spectra of quantum dots.

Note that Eq. (36) describes absorption by a system of
equivalent quantum dots under identical conditions, which
means that inhomogeneous broadening in not taken into ac-

Below we list the results of our work.

a) We have derived analytic expressions for the exciton–
vibrational interaction of the Fröhlich type in quantum dots
in the weak confinement regime, and have established the
selection rules for transitions between any excitonic levels. It
has been found that because of three-dimensional confine-
ment, the exciton–phonon interaction in transitions between
states with the same parity (related to the relative electron–
hole motion) loses its forbidden nature.

b) We have studied the size dependence of the exciton–
phonon interaction matrix elements that describe the transi-
tions between the lowest exciton levels. It has been estab-
lished that the amplitude of the matrix elements sharply
decreases with increasing phonon quantum number \(n \). This
makes it possible to use only a small number of vibrational
modes, for example, in studying the cross sections and exci-
tation profiles of resonant Raman and hyper-Raman scatter-
ing and in interpreting the corresponding experimental data.

c) We have estimated the Huang–Rees factor, which
plays an important role in various multiphonon processes. It
has been established that this factor strongly depends on the
quantum-dot radius. On the basis of these results we have
calculated the form function of the multiphonon absorption
of light by a system of quantum dots with allowance for both
homogeneous and inhomogeneous broadening.

d) We have shown that essentially quantum dots consti-
tute a Jahn–Teller system. Moreover, under certain condi-
tions, vibrational resonance between excitonic states can oc-

4. CONCLUSION

In calculating the matrix elements of the exciton–
phonon interaction we assumed that the potential of a quan-
tum dot has infinitely high walls, and ignored the relation-
ship between excitons and surface vibrational modes. But
even without these restrictions the structure of (8) is the
same. As before, the matrix elements are linear combinations
of products of six Clebsch–Gordan coefficients determining
the selection rules in spherically shaped nanocrystals.

At the same time, the analytic expressions for the weight
factors, which specify the magnitude of the exciton–phonon
interaction, differ considerably from (9) and (10). Therefore,
it would be interesting to generalize the results of the present
paper to these cases. In particular, allowing for surface
modes could prove to be important in problems of vibra-
tional and double optical–vibrational resonance and in the
Jahn–Teller effect.

FIG. 6. The form-function spectra of multiphonon light absorption with
allowance for the finite width \(\gamma \) of the excitonic level: (a) for a quantum dot
of radius \(R = 2.0 R_0 \), and (b) for an ensemble of quantum dots with the
Lifshits–Slezov size distribution function (the average radius \(R_0 = 2.0 R_0 \)).

Below we list the results of our work.

a) We have derived analytic expressions for the exciton–
vibrational interaction of the Fröhlich type in quantum dots
in the weak confinement regime, and have established the
selection rules for transitions between any excitonic levels. It
has been found that because of three-dimensional confine-
ment, the exciton–phonon interaction in transitions between
states with the same parity (related to the relative electron–
hole motion) loses its forbidden nature.

b) We have studied the size dependence of the exciton–
phonon interaction matrix elements that describe the transi-
tions between the lowest exciton levels. It has been estab-
lished that the amplitude of the matrix elements sharply
decreases with increasing phonon quantum number \(n \). This
makes it possible to use only a small number of vibrational
modes, for example, in studying the cross sections and exci-
tation profiles of resonant Raman and hyper-Raman scatter-
ing and in interpreting the corresponding experimental data.

c) We have estimated the Huang–Rees factor, which
plays an important role in various multiphonon processes. It
has been established that this factor strongly depends on the
quantum-dot radius. On the basis of these results we have
calculated the form function of the multiphonon absorption
of light by a system of quantum dots with allowance for both
homogeneous and inhomogeneous broadening.

d) We have shown that essentially quantum dots consti-
tute a Jahn–Teller system. Moreover, under certain condi-
tions, vibrational resonance between excitonic states can oc-
cur in a quantum dot. Both of these circumstances are known to lead to the formation of exciton–phonon complexes, which can be observed experimentally by employing the methods used in two-photon spectroscopy or optical–vibrational resonance spectroscopy.

e) We have proposed a new method for calculating the energy spectrum of an exciton in a quantum dot. It allows for the effect of confinement on the relative electron–hole motion and provides a complete set of excitonic states, which is extremely important in describing multiquantum processes.

The authors would like to express their gratitude to the Russian Fund for Fundamental Research for financial support (Projects Nos. 96-02-16235-a and 96-02-16242-a).

Translated by Eugene Yankovsky