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The radiation emitted by a charged particle moving in a randomly inhomogeneous medium is 
considered. In determining the intensity of the radiation the diffusion of the pseudophoton 
excited by the moving charge is taken into account. It is shown that in the shortwave range A (<I ( I  
is the photon mean free path in the medium) the corresponding contribution to the intensity of 
the radiation is the predominant one. Intensity fluctuations and polarization of the radiation are 
also investigated. 

1. INTRODUCTION 

As is well known,' a charge moving in a medium with 
an inhomogeneous dielectric constant radiates. This is by its 
very nature transition radiation. The nature of this radiation 
can be described in the following way (see, e.g., Ref. 2) .  A 
charge moving in a medium creates an electromagnetic field 
(a pseudophoton), which is scattered from the fluctuations 
of the dielectric constant and converted into radiation. 

In earlier articles which have addressed this problem 
(see Refs. 2 and 3) multiple scattering of the electromagnet- 
ic field was not taken into account. In the long-wave region 
where the wavelength of the radiated wave is much larger 
than the characteristic dimensions of the inhomogeneity, it 
is valid to neglect multiple scattering and the radiation has a 
dipole character.' In the short-wave region A < I  ( I  is the 
photon mean free path in the medium), although the scatter- 
ing is weak as a result of the presence of the small parameter 
A /Z, as we will show below, it is still necessary to take multi- 
ple scattering into account. It turns out that multiple scatter- 
ing of the pseudophoton leads to its diffusion in the medium 
and the diffusion contribution to the radiation intensity is 
the dominant one. 

Note that although the pseudophoton is not a real pho- 
ton (a  plane electromagnetic wave), nevertheless its weak 
scattering obeys the ordinary laws of Rayleigh light scatter- 
ing. 

Note that here we are considering a situation in which 
the main interaction of the medium with the electromagnetic 
field is its own elastic scattering. For this reason, along with 
the condition A g I, the condition I(< I,, must also be fulfilled, 
where I,, is the inelastic mean free path of the photon in the 
medium. Such media can be, in particular, those systems in 
which peaks are observed in the backscattering diagram.4 

2. INITIAL RELATIONS 

The electromagnetic field created by a charge moving in 
a medium is described by the Maxwell equations 

div D=4ne6 (r-vt) , D=e (r)E (r, t)  . ( 1) 

Fourier components, we obtain from Eqs. ( 1 ) the following 
equation for E(r,w): 

o2 
V2E (r, o )  -grad div E (r, o )  -t e (r) E (r, o )  = j (r, a ) .  

C 

We assume that the dielectric constant has the form 
~ ( r )  = E, + ( r ) ,  where&' is its fluctuating part, which we 
choose to be in the form of a random field with Gaussian 
distribution and a S-like correlation function: 

0' - <el (r) e, (r') )=g6 (r-r'), 
c4 

( 3  

and j is the source, which for a moving charge with velocity v 
in the direction z has the form 

To separate the radiation due only to the fluctuations 
from the Cherenkov radiation, we represent the field E in the 
form of a sum of two components: E = E, + E l ,  where the 
field E, is the background field created by the moving 
charge in the homogeneous medium with dielectric constant 
E,, and E l  is the scattering field associated with the fluctuat- 
ing dielectric constant E ,  ( r ) .  In light of the foregoing, the 
fields E, and E l  satisfy the equations 

o 
VZEo-grad div En f - eoE,=j (r) , 

cZ 
o2 o2 o2 

VZE,-grad div E, + - &,,El f - elEl = - -&,En. 
c2 c2 c2 

Note that usually the small term -E' E l  is discarded. We 
however will keep it since it is precisely this term which gives 
rise to the multiple scattering which leads to the diffusion of 
the pseudophoton, which in turn drastically alters the radi- 
ation intensity. 

At large distances from the system the electromagnetic 
field can be considered to be a plane wave in which the mod- 
uli of the electric and magnetic field strengths are equal. 
Therefore the radiation intensity at the frequencies w and 
w + dw and in the direction of the solid angles fl and 
f2 + df2 can be written as follows: 

d l  (a, n) ='/2c~o"'lEl (R) I2R2dQdo. 
Here v is the constant velocity of the particle, which we will 
take to be directed along the z axis, vii. Transforming to its Here n is a unit vector in the direction of the observation 
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point R, and R is the corresponding solid angle. As usual, at r r  rrr rt  ~ f f  

R x----x r' R x----x r~ r' 
large distances from the system R % L, where L is the charac- 
teristic dimension of the system, /E, (R)12 behaves like 
1/R 2, so the intensity does not depend on R. 

=PI[ 1~ ' The expression for the intensity (6)  must be averaged R a r" R 
C Arfl  

over all realizations of the random field E ,  ( r ) .  For this pur- 
pose we introduce the Green's function of the second of Eqs. R u;r;r R ; r H  r' 
(5): 

aa oa [ (v2+kz) 8irn - - i- el (r) 6im] Gmj (r, r') 3x3 d x ,  c R A rfr  ArJr e rN R d r' 
r " 

r' f 

=6ij6 (r-r') . (7 )  

Here we have introduced the notation k = (w/c)~A'~ and 
summation over the repeated indices is understood. Using 
Eqs. (7)  and (5) ,  we have 

It is clear that the radiation intensity is expressed in a simple 
way in terms of the tensor I,,: 

3. AVERAGE PSEUDOPHOTON GREEN'S FUNCTION 

In this section we will find in the ladder approximation 
a pseudophoton averaged Green's function which satisfies 
Eq. (8).  In order to do this, we first find the free ( E ,  =0) 
Green's function, which in the momentum representation 
satisfies the equation 

We seek the solution of Eq. (9)  in the form of a combination 
of transverse and longitudinal parts: 

where iji are the components of the unit vector in the q direc- 
tion. Substituting Eq. ( 10) in Eq. (9 )  and solving, we find 

Using Eqs. ( 10) and ( 11 ), we obtain the following expres- 
sion for the free Green's function of the pseudophoton: 

Note that the photon Green's function contains only a trans- 
verse part. Therefore the difference between the free Green's 
functions of the photon and the pseudophoton consists in the 
fact that for the photon the numerator in Eq. ( 12) contains 
q2 in place of k 2 .  However, for weak scattering, values of q 
close to k play a major role, i.e., in this case the Green's 
functions of the photon and the pseudophoton coincide. It is 
precisely for this reason that we say that the scattering of the 
photon and the pseudophoton take place according to the 
same laws. For example, we will show below that the mean 

FIG. 1. Diagram for the average radiation intensity. 

free paths of the photon and the pseudophoton coincide. 
In the coordinate representation it is possible to obtain 

from Eq. ( 10) the following expression for the Green's func- 
tion: 

6 i j  1 d Z  e x p ( i k R )  G,,' (E) = - exp ( ikR)  + --- 
4n R 451k2 8Ri d R j  R 

Using the extrinsic diagram te~hnique,~ we obtain an equa- 
tion which the average Green's function satisfies in the co- 
herent potential approximation: 

The solution of Eq. ( 14) can be represented in the form 

where Im Z = kg/6n-. In this approximation the mean free 
path is given by I = k /Im I: = 6 ~ / g ,  i.e., it coincides with 
the photon mean free path (cf. Ref. 6). Note that in Eq. ( 15) 
we have discarded the term Re 8, which, as usual, gives an 
insignificant renormalization of the parameters. 

4. AVERAGE RADIATION INTENSITY 

As was shown above, the average radiation intensity is 
given by expressions (6) and ( 8). Since we intend to calcu- 
late the diffusion contribution to the radiation intensity, we 
present the simplest diagrams (Fig. 1 ) containing the diffu- 
sion mode and contributing to expression (8).  In Fig. 1 a 
rectangle denotes the so-called diffusion (see, e.g., Ref. 7 ) ,  
defined in Fig. 2. 

In the diagrams the solid lines denote the average 
Green's function, and the dashed lines-the random field 
correlator. We note only that the terminal Green's functions 
containing the observation point outside the system are free. 
The vector indices are written out for brevity only for the 

FIG. 2. Definition of the diffusion for the pseudophoton. 
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diagram that defines the diffusion. To start with, we calcu- 
late the contributions of the irreducible diagrams a and b. 
Using Eqs. (3)  and (8) ,  we have 

I,,. = J drG," (R, r) Gj:. (R, r) Eof (r) Eo; (r) , 
80' 

Here P,,,, is the diffusion propagator of the pseudophoton 
(Fig. 2). The background field E, in Eqs. ( 16) can be found 
from Eq. ( 5 ) :  

At large distances from the system (R 3 r )  the function 
G (R,r) can be represented in the form 

Gij-ninj 
G," (R, r) = - exp {ik (R-nr) ) 

4nR 

Substituting Eq. ( 18) in Eqs. ( 16), we obtain ( 6  is the obser- 
vation angle) 

Using Eq. ( 17) for the part of the intensity I 0  due to single 
scattering, we find from Eqs. ( 19) and ( 6  ) 

Here d is the path taken by the particle in the medium, 
ko = W / U ,  and it was assumed in obtaining relation (20) that 
k <  k ,  (the condition of the absence of Cherenkov radi- 
ation). The logarithmic divergence in Eq. (20) at small dis- 
tances is connected with the 8-like character of the correla- 
tion function of the random field. Taking the finite radius of 
the correlation function into account, the divergent integral 
is truncated at this radius8 and a,,, is simply this radius. 

Now let us calculate the diffusion contribution to the 
radiation intensity. Substituting Eq. ( 18) into Eq. ( 16), we 
obtain 

As was stated above, the scattering of the photon and the 
pseudophoton take place in the same way. This means in 
particular that the corresponding diffusion propagators co- 
incide. Therefore we can use here the diffusion propagator 
for the photon which at small momenta and for an unbound- 
ed medium is equal to (see, e.g., Ref. 6) 

Hence it follows that for an unbounded medium the radi- 
ation intensity diverges. However, it is clear that if we allow 
for the dimensions of the system the smallest possible mo- 
mentum in the system will be - 1/L, where L is the charac- 
teristic dimension of the system. Therefore for a finite sys- 
tem the quantity P(q = 0)  is replaced by -gL ' / I 2 .  
Substituting relations (22) into Eq. (21 ) and calculating the 
integral over the Green's functions with the help of Eq. ( 12), 
we obtain 

After calculating the integral of /E, (r)  1' for the diffusion 
component of the intensity we find from Eq. (6 )  

As follows from Eqs. (24) and (20), I ~ / I ' - L  , / I2$  1. 
This means that the main radiation mechanism is pseudo- 
photon diffusion. We note that the radiation associated with 
this mechanism is isotropic. 

In the derivation of Eq. (24) it was assumed for defi- 
niteness that I, ,  3 L.  If the inverse inequality L 3 l i ,  obtains 
then L in Eq. (24) is replaced by I , ,  . 

Note that for expression (22) to be finite if suffices to 
have the system bounded in one direction. For example, if 
the system is bounded in thez direction (even if L, 3 I ), then 
using the method of images, which permits us to express the 
diffusion propagator for a semi-infinite medium in terms of 
the corresponding propagator of the infinite medium, it can 
be shown that in this case P(q = 0 )  is replaced by - LZ2/1 ,. 

Let us now estimate the contribution of the remaining 
diagrams. Calculations show that even though diagrams c 
and d are also proportional to P(q  = 0) ,  they are still small 
in relation to I D .  The first is of the order of 
( l / k  '1  ') ( l / k  ,a;,, ), and the second is of the order of 
l / k  ' 1  ,. As to diagrams e andf, they are in general nonsingu- 
lar. Thus, the main contribution to the radiation intensity 
comes from diagram b. We emphasize that this conclusion 
bears a direct relation to the contribution to the radiation 
intensity. If r' and r" coincide, the contributions of the re- 
ducible (b)  and irreducible (c  and d )  diagrams are of the 
same order and if we calculate a quantity containing the ten- 
sor Iu ( 8) for coincident r' and r ", then the contributions of 
the irreducible diagrams must also be taken into account. 

5. POLARIZATION OF THE RADIATION 

Let us now determine the polarization of the radiation 
due to pseudophoton diffusion. At large distances from the 
system R%r,  the radiation field can be taken to be a plane 
wave whose direction of propagation coincides with n, but 
whose electric field vector lies in the plane perpendicular ton 
(see Fig. 3 ) . 

The polarization tensor is defined as  follow^:^ 

Here a, f l =  1, 2, and E, and E, are the projections of the 
vector E on the mutually perpendicular directions 1 and 2 
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FIG. 3. Calculating the polarization tensor. 

(see Fig. 3 ) . To find the polarization tensor p ,  we express 
the components E, in terms of the components E, : 

Since the directions 1, 2, and n are mutually perpendicular, 
the following relations hold between the components eai:  

Substituting Eq. (26) into Eq. (25) and using Eqs. (27) and 
(23), we find 

This form of the tensor corresponds completely to unpolar- 
ized radiation. Note that the polarization of the radiation 
due only to single scattering of the pseudophoton' differs 
sharply from expression (28). 

6. RADIATION-INTENSITY FLUCTUATIONS 

Our analysis shows that the main contribution to the 
variance of the radiation intensity is given by the term 

The main contribution to the averages in expression (29) is 
given by the diagram containing one diffusion. Using Eqs. 
( 12) and ( l a ) ,  it can be shown that 

1 1 
(Gi, (R, r,) G ~ '  (R, ri )  ) = - 

16nZR2 
(6tm-n,nm) P ( 9 4 )  - djh .  

6n 

(30) 

Substituting Eq. (30) into Eq. (29), we finally find for the 
variance 

Thus we see that the radiation intensity fluctuations are 
anomalously large, in fact of the order of the intensity itself. 
Such a behavior can be explained in the following way. We 
know'' (see also Ref. 1 1 ) that during the diffusive propaga- 
tion of light in a randomly inhomogeneous medium the in- 
tensity undergoes large fluctuations. Clearly the same thing 
happens during the propagation of a pseudophoton in a ran- 
domly inhomogeneous medium. It is precisely these fluctu- 
ations that are manifested in the radiation intensity. 

7. CONCLUSION 

The aim of the present article has been to take account 
of the effects of multiple scattering of an electromagnetic 
field during the radiation of a charge moving in a randomly 
inhomogeneous medium. The pseudophoton concept, with 
the help of which many well-known results in the propaga- 
tion of electromagnetic waves in randomly inhomogeneous 
media can be applied to the problem of radiation, turns out 
to be quite convenient. 

We have shown that multiple scattering leads to pseu- 
dophoton diffusion and that the contribution of this diffu- 
sion to the radiation intensity is the main one in the 
shortwave region R < I. The main features of this radiation 
are its isotropy and its completely unpolarized character. 
This behavior is explained by the fact that in diffusion there 
is no preferred direction. The radiation intensity fluctu- 
ations, similar to many other disordered systems, are anom- 
alously large. 

The authors thank I. V. Lerner, Yu. E. Lozovik, and N. 
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