Bloch oscillations of electrons and instability of space-charge waves in superconductor superlattices

A. A. Ignatov and V. I. Shashkin

Institute of Applied Physics, USSR Academy of Sciences

A kinetic approach is used to investigate the instability of space-charge waves in semiconductor superlattices in a strong electric field that induces Bloch oscillations in the minibands. Solution of the Boltzmann transport equation with a Bhatnagar-Gross-Krook collision integral yielded for the dielectric constant an expression that makes it possible to take into account, within a unified approach, the influence exerted on the high-frequency response of superlattices by resonance effects and by effects due to carrier drift and diffusion. It is shown that when the strong spatial dispersion is taken into account the spectrum of the space-charge waves is characterized in a wide range of superlattice parameters by a set of stable resonant Bloch superlattices and by an unstable drift-relaxation mode.

1. INTRODUCTION

When an electric field is applied to an ideal crystal having a sufficiently narrow resolved energy band, the carrier motion is localized and the particles oscillate at the Bloch frequency \(\Omega = eE_0d/\hbar \), where \(E_0 \) is the electric field strength and \(d \) is the crystal period. The carrier dynamics in a band of finite width was investigated in sufficient detail in connection with the theory of interband optical transitions. Various approaches to the description of the particle motion under these conditions, starting with Bloch's trail-blazing work, were critically analyzed in recent papers, in which it was shown that if the lower-lying band gap is wide enough the probability of electron interband tunneling is negligibly small for a sufficiently large number of Bloch-oscillation periods. The presence of inelastic collisions is known to result in carrier drift, in dissipation of the applied-field energy and, by virtue of the limited electron energy in the band, in low-frequency drift-relaxation branch of the spectrum. This, naturally, leaves out of consideration the instability development at much higher frequencies. As noted in Refs. 8 and 16, by interacting with the high-frequency field, carriers oscillating in a miniband can produce negative absorption at a frequency equal to or a multiple of the Bloch frequency. It is important to note here in this situation there is produced in the system a characteristic high-frequency response spatial-dispersion scale connected with the swing \(x_{\text{osc}} = \Delta/\epsilon_0 \) of the Bloch oscillations of the electrons in the electric field (\(\Delta \) is the miniband width). The problem calls therefore for a kinetic treatment.

An approach to the calculation of the high-frequency conductivity (the dielectric constant) of an SL in a strong electric field with allowance for spatial-dispersion effects, based on an analogy with the calculation of the conductivity of a magnetoreactive plasma, was formulated in Ref. 17. However, the model used there for the collision integral \(S = -\nu(f_f-f_i) \), as will be shown below, makes it impossible, by virtue of the nonconservation of the number of scattered particles \(f \), to take into account the influence of the carrier drift and diffusion effects on the SCW spectrum. This, naturally, leaves out of consideration the low-frequency drift-relaxation branch of the spectrum. At the same time, the quasihydrodynamic approach used in Refs. 14 and 15 to describe the instability of this branch does not take into account the system's resonant properties due to the Bloch oscillations of the electrons.

We have investigated in the present study the spectrum of the space-charge waves in superconductor superlattices in a strong electric field, by solving the Boltzmann transport equation with a Bhatnagar-Gross-Krook (BGK) collision integral. This approach permits an adequate account of the influence exerted on the SCW spectrum both by resonance effects due to Bloch oscillations of the electrons and by effects connected with carrier drift and diffusion under conditions of strong spatial dispersion. It becomes possible as a result to determine the conditions under which other low-frequency (Gunn) instability or oscillations near the Bloch
frequencies are produced in the system. This is the main purpose of the present paper.

2. INITIAL EQUATIONS

We describe the energy spectrum of the electrons in the lower miniband, which is filled in accordance with the Boltzmann statistics, in the tight-binding approximation:

\[\sigma = \frac{\Delta}{2} \left(1 - \cos \frac{p^d}{h} \right) + \frac{p^d}{2m}. \]

(1)

Here \(\Delta \) is the miniband width, \(p^d \) the quasimomentum component along the SL axis, and \(p^d \) and \(m \) the carrier transverse quasimomentum and mass.

To describe the response of the electrons to external fields, we use the Boltzmann transport equation with a BGK collision integral, which permits adequate allowance for the particle-number conservation law \(f(x, \eta, \rho) = 0 \) for scattering in an inhomogeneous field.\(^{14}\) If the external fields are oriented along the SL axis (vertical transport in the diode configuration), integration of the Boltzmann equation with a BGK collision integral with respect to \(p^d \) makes the problem one-dimensional:

\[\frac{\partial f}{\partial t} + v(p^d) \frac{\partial f}{\partial x} + eE(x) \frac{\partial f}{\partial \eta} = -\nu \left(f - f_0 \right). \]

(2)

where

\[v(p^d) = \frac{\partial \Omega}{\partial \eta} \cos \frac{p^d}{h}, \quad \nu = \Delta d^2/\hbar, \]

\(n \) is the characteristic particle velocity in the band (we omit hereafter the subscript \(z \), since the problem is now one-dimensional),

\[f_0 = n_0 d \exp \left(\frac{k x}{2 \zeta} \cos \frac{p^d}{h} \right) \]

is the equilibrium distribution function normalized to \(n_0 \), \(n(x) \) is the electron density in the \(x \)-plane, \(I_s = I_s \left(\Delta/2 \pi T \right) \) is a modified Bessel function of argument \(\Delta/2 \pi T \), \(T \) is the lattice temperature, \(\nu \) is the characteristic relaxation frequency of the distribution function, and \(n_0 \) is the equilibrium carrier density.

We supplement the transport equation (2) with the Poisson equation and with the condition that the total current is continuous. This formulates completely the electrodynamic of the problem in the one-dimensional situation:

\[\frac{\partial E}{\partial x} = \frac{\Delta n_0}{\varepsilon} \left(n(x) - n_0 \right), \]

(3)

\[j(x) = \int f(p^d) \left(\pi(p) / \hbar \right) dp, \]

where

\[n(x) = \int f(p^d) \left(\pi(p) / \hbar \right) dp, \]

\(x \) is the lattice dielectric constant and the integration is within the limits of the \(S \) Brillouin zone.

Equation (2) is valid within the framework of the quasiclassical description of the particle dynamics in the miniband:

\[\varepsilon E_\perp, \quad h\nu, \ll \varepsilon, \]

(5)

\[\varepsilon E_\perp, \quad h\nu, \ll \varepsilon. \]

(6)

Here \(\Delta_e \) is the width of the forbidden miniband. By virtue of (5), we neglect the Zener tunneling and the optical transitions in the upper minibands. At the same time, if (6) is satisfied, the swing \(x_0 = \Delta/\varepsilon E_\perp \) of the Bloch oscillations in the electric field exceeds the period \(d \) of the structure; this is equivalent in above-threshold fields \(E_\perp \gg \hbar \varepsilon / e d \) to a sufficiently large electron mean free path \(d \gg 2 \nu / \varepsilon. \)

The choice of the collision integral in (2) in the BGK form is a rather crude approximation of carrier-scattering processes. Nonetheless, in the case of homogeneous high-frequency fields the nonlinear SL response, calculated on the basis of (2), is well enough confirmed by results of numerical simulation by the Monte Carlo method when account is taken of scattering by optical phonons and impurities.\(^{15}\)

3. DIELECTRIC CONSTANT

Following the usual approach to SCW investigations,\(^{17}\) we set apart in the structure the volume \(0 < x < L \), in which a small inhomogeneous perturbation

\[E(x, t) = E_0 (x) e^{\omega t}. \]

(7)

is superimposed on the homogeneous constant field \(E_0 \). The high-frequency field \(E_0 (x) \), as well as the perturbations of all the remaining quantities that enter in the problem, permits in the segment \(0 < x < L \) a representation in the form of Fourier series:

\[\Phi (x) = \sum_k \Phi (k) e^{ikx}, \]

(8)

where \(k = 2\pi n/L \) and \(m \) are integers. Linearization of the Boltzmann transport equation leads to the following relation for the Fourier component of the perturbations of the distribution function, of the field, and of the particle density:

\[\frac{\partial E_{\perp}}{\partial \eta} + \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial \eta} \right) \frac{\partial E_{\perp}}{\partial \eta} = -\frac{\partial \Omega}{\partial \eta} \frac{\partial E_{\perp}}{\partial \eta} - \frac{\partial \Omega}{\partial \eta} \frac{\partial n_{\perp}}{\partial \eta} \]

(9)

where \(\Omega = eE_\perp / \hbar \) is the amplitude of the high-frequency field, \(\varphi = pd / \hbar \) is the dimensionless quasimomentum, \(\alpha = (\omega + iv)/\Omega \), \(\beta = \hbar \nu/\Omega \) is the normalized wave number of the perturbations, and \(F_s \) is the electron distribution in the constant homogeneous electric field \(E_0 \).

\[F_s = \frac{n_0 d^3}{2\pi^2} \left(\sum_k \frac{\omega}{\nu + i\omega} e^{ikx} \right). \]

(10)

We obtain the connection, in the Fourier representation, between the perturbations of the electric field, of the current and of the particle density from Eqs. (3) and (4):

\[\frac{\partial \Delta \Omega}{\partial \eta} = -\Delta \varphi \frac{\delta_{\alpha,0}}{\hbar \nu} \frac{\partial n_{\perp}}{\partial \eta}, \]

(11)

\[\frac{\delta_{\alpha,0}}{\hbar \nu} \frac{\partial E_{\perp}}{\partial \eta} = \frac{\Delta \varphi}{\hbar \nu} E_{\perp} (k), \]

(12)

where \(\delta_{\alpha,0} \) is the Kronecker delta.

From the formal viewpoint, the method of finding the solution of (9) is perfectly similar to the calculation of the dielectric constant of a magnetooactive plasma,\(^{13,14}\) with the periodicity of the coefficients in (9) determined by the periodic dependence of the particle energy on the quasimomentum (11). Solving (9) by the method given in Ref. 20, we obtain for the high-frequency conductivity that relates the Fourier components of the current and the field

A. A. Ignatov and V. I. Shashkin 527
4. DRIFT-RELAXATION AND RESONANCE (BLOCH) MODES

It is known that the temporal evolution of the initial perturbation in an active medium is determined by the solution of the dispersion equation \(\varepsilon(\omega, k) = 0 \) for real values of the wave numbers \(k \). Examination of expressions (14) and (15) shows readily that if the complex frequency \(\omega(k) \) is a solution of the dispersion equation, then \(-\omega^* = -k\) is also its solution, i.e., we can confine ourselves in the analysis of the SCW spectrum to the region \(\Re(\omega(k)) > 0 \), where \(-\omega < k < \omega \), and construct the solution in the region \(\Re(\omega(k)) < 0 \) by using the indicated symmetry property. We note right away that since the system has a preferred direction connected with the electric field, the roots of the dispersion equation must satisfy the symmetry relations for equilibrium isotropic media. It is obvious only that \(\omega(k, E) = \omega(-k, -E) \).

Neglecting spatial dispersion effects, the determination of the system natural oscillation spectrum satisfying the relation \(\varepsilon = i\Delta \omega(\omega(0) - \omega) = 0 \) reduces to solving a third-order equation, with real coefficients, for the quantity \(\delta = -i\Delta\omega \), where \(\omega \) is the complex frequency:

\[
\delta^3 + 2\delta^2 + 2\delta - 1 = 0, \tag{18}
\]

Here

\[
Z = -\varepsilon\omega_0/(\varepsilon' + \varepsilon^*), \quad \gamma = \omega_0^2/(\varepsilon^2 + \varepsilon'^2), \quad \omega_0 = \omega_1, \quad \Omega = \omega_0, \quad \varepsilon = \varepsilon_0
\]

\(Z = 0 \) is the square of the carrier plasma frequency. The solution of (18) takes in an approximation with low plasma frequencies \(\gamma < \max(1 - Z^2)^{-\frac{1}{3}}, Z \) the form

\[
\omega_1 = -\omega_0, \quad \omega_1 = -\omega_0, \quad \omega_2 = \pm \omega_0 \sqrt{\omega_0^2 - 1}, \tag{19}
\]

\[
\omega_3 = \omega_0 \sqrt{\omega_0^2 - 1}, \tag{20}
\]

Relation (19) describes the relaxational (aperiodic) buildup of the perturbation in the above-threshold field \(Z > 1 \). It will be made clear below that at \(k = 0 \) this solution corresponds to the drift-relaxation branch of the spectrum with a growth rate and a phase velocity that depend on the wave vector. Equation (20) yields damped oscillations of the electric field at the hybrid plasma-Bloch frequency. In the limit \(\gamma \rightarrow 0 \) these oscillations correspond to the Bloch resonant branch of the spectrum. It is important to note here that according to the Routh-Hurwitz criterion, there are no growing solutions with \(\Im \omega > 0 \) at arbitrary values of the plasma frequencies (of the parameter \(\gamma \)) in below-threshold fields \(Z < 1 \), and that at \(Z > 1 \) there is a single root with \(\Im \omega > 0 \). This proves at the same time that at \(k = 0 \) only the relaxation mode of the spectrum is unstable, and the oscillations near the Bloch frequency are damped.

Allowance for the spatial dispersion leads to the onset of propagating waves near the Bloch frequency and its harmonics, in analogy with the case of cyclotron waves in a magnetized plasma. \(2^3 \) In the limit \(\Omega \gg \omega_0 \), when the plasma resonance has high \(\Omega \), the double series in (14) can be summed with the aid of the Bessel-function addition theorem, \(2^3 \) while the SCW spectrum near a resonance of multiplicity \(I \) can be represented in the form

\[
\omega = (\Omega - i\varepsilon J_0) \left[J_1(\delta z + \phi) + \frac{\omega_0}{\Omega} J_1(\delta z + \phi) \right] I_{n-I} - J_{n-I} \right), \tag{21}
\]

where \(\delta = \Omega/2\pi T, \quad I = 0, 1, 2, 3, \ldots \). The solution with \(\Re \omega < 0 (I < 0) \) is obtained in accordance with the symmetry property mentioned above. At \(I = 0, \) Eq. (21) describes the drift-relaxation branch of the spectrum. Indeed, in the
limit $\beta < 1$ we obtain, on the basis of (21), an ordinary dispersion relation in the form1,3,4

$$\omega = k v_0 - \left(\omega_0 + k^2 D\right), \quad (22)$$

where the coefficients

$$\omega_0 = -\omega_d / \sqrt{\pi} Z, \quad (23)$$

$$v_0 = v_d / \sqrt{\pi} Z, \quad (24)$$

$$D = \frac{e^2}{4v} \left(2 + \frac{1}{\lambda_1} \right) \frac{1}{\lambda_2^2}, \quad (25)$$

determine respectively the differential Maxwellian frequency, the drift velocity, and the diffusion coefficient in a strong electric field $Z \gg 1$ and at relatively low carrier density $\omega_0 < \Omega$.

To analyze the SCW spectrum in a wide range of values of the parameter ω_0 / v and wave numbers β we use a numerical solution of the dispersion equation by the iteration method. The calculation results for a Bloch resonance with sufficiently high Q, $Z = 0$, $\Delta / 2xT = 1$, at different values of ω_0 / v are shown in Fig. 1. The frequency region $Re \omega$ contains the drift-relaxation mode and two resonant ($l = 1$, 2) modes of the spectrum. As seen from the figure, the conditions

$$Re \omega (k) > Re \omega (-k), \quad Im \omega (k) = Im \omega (-k),$$

are met for the drift-relaxation branch, obviously as a consequence of the general symmetry property of the solutions. With increase of the plasma frequencies, in accordance with (19), the growth rate of the instability of the drift-relaxation mode increases, whereas the resonant mode ($l = 1$) is stable all the way to values $\omega_0 / v \geq 20$ corresponding to quite high Q of the plasma resonance. At $k = 0$ the oscillation frequency of the resonant branch follows the analytic estimate (20).

For typical values of the SL structure parameters $\omega_0 / v \approx 1.76$, $\Delta / 2xT \approx 1.74$, $Z = 1.5$, corresponding approximately to the GaAs-Al$_{0.33}$Ga$_{0.67}$As samples with period $d = 90 \AA$, investigated in Ref. 12 at $T = 100$ K, $\Delta \approx 30$ meV, $\epsilon = 13$, $n_0 = 2.2 \times 10^{14}$ cm$^{-3}$, $e_0 = 2 \times 10^4$ cm/s, and $v_e:5 \times 10^5$ s$^{-1}$. The numerically calculated SCW spectrum is shown in Fig. 2. It can be seen from this figure that the resonant branch is strongly damped, whereas the drift-relaxation branch is unstable in a wide range of wave numbers. In the entire wave-number region corresponding to the SCW instability, the spectrum of the drift-relaxation branch is well described by a second-order polynomial of form (2), so that the type of instability can be determined by using the criterion $|\omega_{\omega_{0}}| > 4D / \lambda_2$ formulated for this case and describing the transition from convective to absolute instability.1,3,4 In the normalized variables shown in Figs. 1 and 2, the absolute-instability criterion takes the form

$$Re \omega > |\omega_0| > d \pi / 2 \lambda_2, \quad (26)$$

where $B_\omega = \omega_0 / v$, ω_0, is the growth rate at $\beta = 0$, $d (Re \omega) / dB$ is the effective drift velocity, and β_0 is the limiting wave-
vector value at which the growth rate vanishes. As seen from
Fig. 2, according to (26) the instability is absolute in this
case.

As shown in Ref. 24, in systems with NDC, drift, and
carrier diffusion, the criterion (26) determines significantly
the consequence of the evolution of the SCW instability. Un-

to switchover effects on the current-voltage characteristic of
the structure (for example, near its boundaries); this leads
to switchover effects on the current-voltage characteristic of
the structure. A convenient estimate of the density at which
the criterion (26) is satisfied is obtained on the basis of

\[n_0 \geq \left(\frac{\epsilon f}{100m_0} E \right)^2, \quad x \geq \Delta \]

\[n_0 \geq \left(\frac{\epsilon f}{100m_0} E \right)^2, \quad x \geq \Delta. \]

(27)

We note finally that the approximation with a quasi-
classical description of the \(W \) spectrum is valid at \(\lambda > \Delta \) (\(\lambda \) is
the length of the SCW); this is equivalent to

\[n_\Delta /\sigma_0 \epsilon E \geq 1. \]

(28)

In the wave-number region shown in Figs. 1 and 2 we have
\(\pi /\beta \leq 1 \). Equation (28) reduces then to the initial condition
(6) for the validity of the quasiclassical description.

5. CONCLUSION

The foregoing kinetic analysis of the space-charge-wave
spectrum in semiconductor SL shows that at typical values of
the SL parameters the character of the instability develop-
ment is determined by the low-frequency drift-relaxation
branch. At the same time, the high-frequency resonant
(Bloch) branches of the spectrum (Re \(\omega = \pm \Omega \)) are stable in
a wide range of SL parameters, except in the cases of very
high \(Q \) of the Bloch and plasma resonances. Thus, the build-
up of high-frequency oscillations of an electric field and of
space charge in superlattices at frequencies comparable with
the Bloch frequency is hindered by the low electron mobility
due to the small width of the miniband and to the high collis-
ion frequency.

1. V. V. Kel'dysh, Zh. Eksp. Teor. Fiz. 34, 1138 (1958); 43, 661 (1962)
[Sov. Phys. JETP 5, 708 (1958); 8, 471 (1962)].
(1971) [SoV. Phys. JETP 23, 779 (1966)].
6. B. Levinson and F. Yadvichulc, ibid. 62, 1902 (1972) [35, 991
(1972)].
7. T. A. Suris and B. S. Shakhmatova, Fiz. Tekh. Poluprov. 18, 1178
22, 28 (1980)].
972 (1985)].
2, 313 (1986).
Electrical Instability in Semiconductors, Consultants Bureau, 1975.
JETP 61, 1220 (1985)].
18. V. V. Zorchenko and P. P. Teterov, Fiz. Tverd. Tela (Leningrad) 20,
19. V. L. Ginsburg and A. A. Rushchew, Waves in a Magnetostatic Plasma
[in Russian], Nauka, 1975, p. 64.
(Leningrad) 33, 8 (1971) [Phys. Status Solidi 33, 179 (1977) [18, 805
(1977)].
576].
25. A. Gray, G. B. Matthews, and T. M. MacRobert, A Treatise on Bessel
Functions and Their Applications to Physics, MacMillan, 1922.

Translated by J. G. Adashko