Inhomogeneous superconductivity in disordered metals

L. N. Bulaevskii, S. V. Panyukov, and M. V. Sadovskii

P. N. Lebedev Physics Institute, USSR Academy of Sciences

(Submitted 21 July 1986)

Zh. Eksp. Teor. Fiz. 92, 672–688 (February 1987)

A parameter τ_d is introduced to describe the temperature region near T_c, in which the statistical spatial fluctuations of the order parameter are strong. It is shown on the basis of the Ginzburg–Landau functional, with the aid of the replica method, that two temperature superconductivity regimes are realized, depending on the degree of the disorder. At $\tau_d > \tau_d^c = 2.49\tau_{c0}$, where τ_d is the Ginzburg parameter that characterizes the size of the region of strong thermodynamic fluctuations, the superconductivity is produced in spatially inhomogeneous fashion with droplike seeds. The drop density and their contribution to the free energy and to the diamagnetic susceptibility are obtained in a model of non-interacting drops. If $\tau_d < \tau_d^c$, superconductivity sets in below T_c simultaneously in the entire volume, i.e., the usual second-order transition is realized.

INTRODUCTION

The theory of dirty superconductors, developed by Abrikosov and Gor'kov1,2 and by Anderson,3 is the basis of the quantitative description of the superconducting properties of a large number of disordered alloys. As the theory of strongly disordered system progressed, however, it became clear that the main results of Refs. 1–3 must be modified to fit mean free paths l of the order of the Fermi wave number k_F^{-1} (of the order of the interatomic distance). A growth of disorder in three-dimensional systems causes the electron diffusion to stop at mean free path l shorter than a certain value $l_c \approx k_F^{-1}$, the electron diffusion ceases, the electronic states near the Fermi level become localized, and the system goes over into the state of an Anderson dielectric.4,5 This metal-insulator transition manifests itself in a continuous vanishing of the metallic conductivity (at $T = 0$) as $l \to l_c$. At $l > l_c$, the conductivity is determined by the standard Drude formula and $\sigma \sim 1/l$, whereas at $l \approx l_c$, it decreases like $\sigma \sim (1 - l/l_c)^{-\alpha}$, where α is a certain critical exponent. The transition from diffusion to localization takes place at conductivities σ on the other of the so-called minimal metallic conductivity $\sigma_\text{m} \approx (e^2k_F/\pi\hbar)^2 \approx (3-5) \times 10^4 \Omega^{-1}\text{cm}^{-1}$. The theory of dirty superconductors does not take localization effects into account and is valid for conductivities in the interval $(\sigma \approx \sigma_\text{m})$.

The data known so far on the behavior of superconductors near the localization threshold are the following.

1. Assuming the density of states $N(E_F)$ to be independent of the Fermi level and the dimensionless electron-phonon interaction parameter λ, to be independent of l, it can be shown that T_c decreases with decrease of l, owing to the corresponding growth of the Coulomb pseudopotential μ^*. This effect is due to the increase of the delay of the Coulomb repulsion in the Cooper pair as the diffusion coefficient decreases near the localization threshold, due to the electron repulsion,6 which can cause a decrease of T_c in ultradilute superconductors,11,12 but there is still no consistent quantitative theory of this effect. We note that the decrease of T_c due to the mutual influence of the disorder and of the Coulomb effect was first considered by Ovchinnikov13 and by Maekawa and Fukuyama (see Refs. 4 and 13) within the framework of the BCS model with allowance for the lowest localized corrections.

2. Bulaevskii and Sadovskii14 and later Kapitulnik and Kotliar14 found the superconducting coherence length ξ (at $T = 0$) in the region $\sigma < \sigma_\text{m}$, and also in the localization region $(l < l_c)$. At the mobility threshold itself, where $l = l_c \approx k_F^{-1}$ and $\sigma = 0$, we have $\xi \approx \xi_0 = 0.188\hbar v_F/T_c$.

In contrast to the standard theory of dirty superconductors with $l > l_c$ (Refs. 1 and 2), in which $\xi \approx \xi_0$ is proportional to σ, as $l \to l_c$, we have $\sigma \to 0$ whereas ξ remains different from zero both at the mobility threshold $(l = l_c)$ and in the localization region, i.e., in an Anderson dielectric. The same result was obtained recently by Ma and Li15 who used another method. Obviously, these results are valid only if T_c does not vanish all the way to the Anderson transition, a situation possible only if rather stringent conditions imposed by the effects noted in Sec. 1 are met. The fact that ξ differs from zero when σ vanishes at $l = l_c$ means conservation of the superconducting response in the phase of an Anderson dielectric.

3. As the disorder increases, the region of thermodynamic fluctuations near T_c increases. The width of this region is defined as τ_d, where the characteristic Ginzburg parameter for dirty superconductors is equal to $\tau_d \approx \xi^2 N(E_F) \chi^2 \approx \xi_l^2$. Kapitulnik and Kotliar14 noted that near the mobility threshold, where $\xi \approx (g_F \xi_0)^{1/4}$, the parameter τ_d does not contain a small quantity such as T_c / E_F (is not excluded, of course, that τ_d remains small because of a small numerical factor). Therefore a superconducting transition near the location threshold can in princi-
ple not become an analog of a A transition in HeA. Allowance for such a procedure would lead in fact to a change of the critical exponents in the temperature dependence of the thermodynamic quantities near Tc compared with the corresponding exponents of the molecular-field theory.

All the cited theoretical analysis of the influence of disorder on superconductivity were made under the assumption that the superconducting order parameter is self-averaging. This remarks pertains both to the classical theories and to all recent studies of superconductivity near and in the Anderson localization state. It is assumed here that the fluctuations of the superconducting order parameter \(\Delta (r) \) are small, and the use of the parameter \(\Delta (r) \) is justified. It seems natural for such a procedure to be valid at low-energies, but there are no grounds for believing it to be correct near the localization threshold. In such a system the electronic characteristics fluctuate strongly, and we shall in Sec. I below that these fluctuations actually lead to substantial spatial fluctuations of the parameter \(\Delta (r) \) (a brief summary of this section is given in Ref. 17).

In Sec. II we consider superconductors with spatial fluctuation of the local “temperature” of the superconducting transition. We shall show that if the amplitude of such statistical fluctuations exceeds a critical value, the superconductivity manifests itself with decrease of temperature in a long-wave variation of the superconducting order parameter \(\Delta (r) \). We have neglected in (2) the fluctuations of the parameter \(\Delta (r) \); it will be seen from the analysis that follows that they are less substantial than the fluctuations of the kernel \(K(r,r') \). Assuming the fluctuations of the kernel \(K(r,r') \) and of the parameter \(\Delta (r) \) to be small, we estimate the temperature region in which this assumption turns out to be incorrect and where a description with the aid of the averaged order parameter is inadequate. It will be shown below that the variance is determined mainly by the long-wave variation of \(\Delta (r) \). We can therefore transform from (2) to the GL functional for the order parameter:

\[
\mathcal{F}'_{\mu}(\Delta (r), \Delta (r')) = \int dr \left\{ \frac{B'(r)}{8\pi} + N(E_r) \left[(\tau - \epsilon) | \Delta (r) |^2 + \left| \nabla \Delta (r) \right|^2 + \frac{1}{2} \frac{1}{\tau} \left| | \Delta (r) |^2 \right|^2 \right] \right\},
\]

where \(T_{\text{c}} \) is the transition temperature determined by the averaged kernel \(K(r,r') \) with allowance for the short-wave fluctuations of the kernel \(K(r,r') \). The derivation of (3) assumed the fluctuations of the coefficient \(\xi \). The function \(\xi (r) \) plays here the role of the fluctuation local critical “temperature.” It takes into account the fluctuations of the pairing interaction, for which \(\tau (r) = \lambda (\xi (r)) - \lambda (\xi (r)) + \delta (\xi (r)) \), and also the fluctuations of the dipole density of the electronic states \(N(e_r, E_r) \):
conductors with $\sigma \neq \sigma_c$, (i.e., $\lambda s^2 \gamma^2$) we have $\gamma(0) \approx e^{-N^{-1}}(E_F) \tau -1$, where $D_0 = \gamma_c l/3$ is the classical diffusion coefficient. We then obtain from (5)

$$
\langle \Delta \rangle / \Delta^2 \approx 1 - \ln \left(\frac{\gamma(0)}{\gamma} \right), ~ \tau = \xi^2(0)/4, \tag{6}
$$

where $\xi \equiv (\xi_c)^{1/2}$. The parameter τ_2 introduced by us defines the region in which statistical (spatial) fluctuations of the order parameter are significant. It can be seen from (6) that $\tau_2 > \tau_0 \propto \xi_c$, in dirty superconductors, i.e., the statistical fluctuations are unimportant even in a region where thermodynamic fluctuations are noticeable enough.

The situation changes radically in the vicinity of the mobility threshold, where $\gamma(0) \approx e^{-N\lambda^2(1/8)}$. From (5) we obtain for the variance of $\Delta(t)$ the expression

$$
\langle \Delta(t) \rangle / \Delta^2 = 1 - \frac{4}{(\varphi(0))} \left[\frac{1}{4} \right], \tag{7}
$$

According to (7), the statistical fluctuations near the mobility threshold turn out to be most substantial, and are stronger here than the thermodynamic fluctuations in view of the logarithmic factor in $\gamma(0)$. Thus, near the localization threshold we have $\tau_2 \approx \tau_0 \approx 1$. The transition from the regime of weak statistical fluctuations ($\tau_2 < \tau_0 \approx 1$) to the regime of strong ones ($\tau_2 > \tau_0$) takes place at the values $\tau_2 = \tau_0 \approx 1$. Since the regime of small statistical fluctuations $\tau_2 < \tau_0$ is realized initially only in regions with increased transition "temperature" corresponding to the parameter $\lambda_{\text{loc}} < \lambda_{\text{loc}}$. A much less trivial factor is that at $\tau_2 > \tau_0$ on the lower side of τ_2 there is likely no averaging of the superconducting properties, if the level of the fluctuations of $\gamma(0)$ is high enough.

II. SUPERCONDUCTIVITY IN SYSTEMS WITH STRONG DISORDER

1. Formulation of problem

We consider now superconductivity in systems with strong spatial statistical Gaussian fluctuations of the local transition "temperature" $\gamma(0)$. We shall show that in this model, depending on the degree of disorder, i.e., on the ratio τ_2 / τ_0, two types of superconducting transition are possible.

At $\tau_2 < \tau_0 = 2.49\tau_0$, the superconducting transition is a second-order phase transition at the point T. The superconducting order parameter is in this case equal to zero at $T > T$. and is spatially homogeneous over scales exceeding the correlation length $\xi(T)$ below T. Statistical fluctuations lead only to a change of the critical exponents in the temperature dependence of the basic characteristics of the system $\gamma(T)$, $\lambda_{\text{loc}}(T)$, and others.

At $\tau_2 > \tau_0$, the superconducting state appears in inhomogeneous fashion, even if the correlation radius ξ of the disorder-induced fluctuations of the temperature $T(\tau)$ is small compared with the superconducting correlation length ξ. We refer to disorder of this type, with $\xi_T > \xi$, as microscopic. The first to deduce the possibility of an inhomogeneous superconducting transition for microscopic disorder were Ioffe and Larkin. Investigating the case of extremely strong disorder (in fact $\tau_2 > 1), \tau_0$, they have shown that the temperature is lowered the normal phase acquires localized superconducting regions (drops) with characteristic dimension $\xi(T)$. Far from T, their density is low, but with further cooling the density and dimensions of the drops increase and they begin to overlap. The superconducting transition becomes percolative in this case.

The Ioffe-Larkin transition, valid in the limit of very strong disorder, did not take thermodynamic fluctuations into account and provided no criterion for the transition from the homogeneous superconductivity to the inhomogeneous ones. The corresponding criterion $\tau_2 > \tau_0$ would be obtained below for a model with Gaussian fluctuations of $T(\tau)$.

According to the estimates given in Sec. 1, if the impurities influence only the local density of states $N(E_F)$ in the system, the parameter τ_2 / τ_0 increases from a very small value to values greater than unity as the disorder increases and a transition takes place from the $\lambda s^2 \gamma^2$ regime to the electron localization regime ($\lambda \approx \gamma^2$). An onset of an inhomogeneous superconducting regime is therefore to be expected as the localization threshold is approached. In a system that contains regions with increased value of the...
parameter \(A_{00} \), under conditions \(\theta \gg kT \), this regime can be realized also at parameter values \(r, k \ll 1 \), since \(r, k \ll 1 \) in such a system.

Our treatment of superconductors with large disorder will be based on the GL functional (3a) with a Gaussian distribution of the temperature \(t(r) \). Given the distribution \(t(r) \), the free energy of the system and the order-parameter correlator are equal to

\[
F_{0}(t(r)) = -T \ln Z \quad Z = \int D[A] \exp [-F_{0}(A)/T],
\]

(9a)

\[
\langle \Delta(t) \Delta(t') \rangle = Z^{-1} \int D[A] \Delta(t) \Delta(t') \exp [-F_{0}(A)/T],
\]

(9b)

and they must be averaged, assuming that the correlator

\[
\langle t(t') \rangle = \delta(t-t'),
\]

(10)

is known. For Gaussian fluctuations with a correlator (10), the probability of a configuration with a given \(t(r) \) distribution is

\[
P(t(t)) = \exp \left[-\frac{1}{2T} \int dt t^{2}(r) \right].
\]

(11)

The problem reduces thus to calculation of the functions \(F_{0}(t(r)) \) and \(\langle \Delta(t) \Delta(t') \rangle \) (9b) and their subsequent averaging with the aid of (11).

We confine ourselves in this article to consideration of noninteracting drops. We can then disregard the presence of vortices in the sample, and in each drop the phase of the order parameter \(\Delta(r) \) can be regarded as nonsingular. Following the gauge transformation

\[
\Delta(r) \rightarrow \Delta(r) + \int dr' \phi(r') V(r-r'),
\]

(12)

we get the GL functional becomes

\[
F_{0}(A_{i}, t(r)) = -\frac{1}{8T} \int dr \left[\beta(t) + N(E_{F}) \left(\frac{\tau(t)}{\pi} \Delta^{2}(r) \right) + \frac{4A_{0}^{2} \mu^{2}}{c_{0}^{2}} \Delta^{4}(r) + \frac{1}{4} \left(\frac{\tau(t)}{\pi} \right) \Delta^{4}(r) \right],
\]

(13)

Integration over the phase in (9) adds to the partition function an inessential constant factor which we shall disregard hereafter. To calculate the free energy of a system of noninteracting drops we shall use an approach similar to the fluctuation theory of nucleation of a new phase in first-order transitions, and also the replica method.

2. Fluctuation theory of drops

Superconducting drops can appear in a specified \(t(r) \) configuration only in regions with locally higher superconducting-transition temperatures. We shall number these regions by the subscript \(i \). The order parameter in each region is determined by a nontrivial localized solution \(\Delta_{i}(r) \) of the GL equation, and the contribution of such a drop to the partition function of the system is

\[
N^{0}(t(r)) \exp \left[-\frac{E_{d}^{0}(t(r))}{T} \right],
\]

(14)

\[
E_{d}^{0}(t(r)) = F_{0}(A_{i}, t(r))
\]

where \(E_{d}^{0} \) is the drop energy, and the factor \(N^{0} \) is determined by the contribution of the \(\Delta_{i}(r) \) configurations that are close to the classical solution \(\Delta_{i}(r) \). Summing the contribution of configurations containing an arbitrary number of drops and neglecting their interaction with one another, we obtain the partition function (9a) of the system,

\[
Z = Z_{0} \left[1 + \sum N^{0} \exp \left(-\frac{E_{d}^{0}}{T} \right) \right] + \ldots
\]

(15)

Here, \(Z_{0} \) is the partition function of the system in the absence of drops. Substituting (15) in (9a) and averaging the free energy of the system over the \(t(t) \) configurations, we get

\[
F_{0} = -\frac{T}{N} \int d(t(t)) \sum_{i} N^{0}(t(r)) \exp \left(-\frac{F_{0}(t(r))}{T} \right),
\]

(16)

where \(N \) is a normalization factor and \(F_{0} \) assumes the role of the free energy of the drop:

\[
F_{0}(t(t)) = E_{d}(t(t)) - T \ln P(t(t)).
\]

The main contribution to the functional integral (14) is made by the configurations \(t_{0}(r) \) that realize an extremum of the functional (15):

\[
t_{0}(r) = \frac{\Delta_{0}}{\tau(r)},
\]

(17)

Note that \(t_{0}(r) = \tau(r) \) is negative, since the drops appear in regions of higher superconducting-transition temperatures. Substitution of (16) in the GL equation that corresponds to the functional (3a) leads to a nonlinear equation for the order parameter \(\Delta_{i}(r) \) in the superconducting drop. In dimensionless variables, this equation is

\[
\Delta_{i}(r) = \left(\frac{\tau(r)}{\pi} \right)^{1/4} \left(\frac{r}{\pi} \right)^{1/4} \Delta_{i}(r),
\]

(18)

The asymptote of the function \(\tau(x) \) at \(x \rightarrow 1 \) is determined from the linearized form of Eq. (18), and \(\tau(x) \) is a decreasing function of \(x \). The superconducting nuclei are thus localized over a scale of the order of the correlation radius \(l(T) \). The quantity \(F_{mn} \) is obtained by substituting (16) and (17) in (15):

\[
S_{i}(r) = \frac{F_{mn}}{T} = \frac{A^{2} \tau^{2}}{4 \pi^{2} T / (E_{F})^{2}} = A \left(\tau_{0} \right)^{2} \left(1 - \frac{1}{2} \frac{\tau^{2}}{\tau_{0}^{2}} \right),
\]

(19a)

It determines, with exponential accuracy, the free energy (14) of the drops. The constant \(A \) in (19a) is equal to

\[
A = \frac{\gamma}{2} \int x^{2} \left(\frac{dx}{dx} \right)^{2} \left(1 - \frac{1}{2} \frac{\tau^{2}}{\tau_{0}^{2}} \right) = 37.8.
\]

(19b)

Note that the energy \(E_{d}(t_{0}(r)) \) of superconducting drops is negative, and their production is energywise favored compared with the case of the spatially homogeneous solution.
\(\Delta(r) = 0 \). According to (19a), superconducting drops can exist only in the presence of sufficiently strong statistical fluctuations \(\tau_D > \tau \); a rigorous restriction will be obtained below.

To determine the pre-exponential factor in (14) one must turn to the solution of the complete problem (11), (13). Neglecting its thermodynamic fluctuations, the order parameter can be obtained within the framework of the Ioffe-Larkin method.\(^{23}\) We obtain for the free energy of the system and for the drop density \(\rho \), the expressions

\[
F(r) = -T \frac{1}{\rho(r)} \langle \mathcal{F}(T) \rangle \exp \left[-S_\rho(r) \right],
\]

\[
\rho(r) = \frac{1}{\rho(r)} \exp \left[-S_\rho(r) \right].
\]

(20a)

(20b)

The exponent \(S_\rho(r) \) is defined here by Eq. (19a) with \(\lambda = 0 \). Note that the pre-exponential factor in (20a) differs from that obtained in Ref. 24, which contains an inaccurate expression for the free energy of one drop. It is seen from (19a) that at \(\lambda \rho \Delta_{\rho}(r) \) we obtain for \(S_\rho(r) \) the result of the Ioffe-Larkin theory of weak thermodynamic fluctuations. This means that their approach is valid if the inequality \(\tau_D \ell \rho \Delta_{\rho}(r) \) holds, and this is possible only if \(\tau_D \ell \rho \Delta_{\rho}(r) \).

It follows from (20) that in the region where these expressions are valid the average energy \(F/\rho \), of each drop is large compared with the temperature, and the two become comparable at \(\lambda = \Omega_\rho \Delta_{\rho}(r) \). We confine ourselves hereafter to the region \(\lambda > \Omega_\rho \Delta_{\rho}(r) \) i.e., \(\tau_D \ell \rho \Delta_{\rho}(r) \), where the contribution of the thermal fluctuations becomes substantial. It will be shown below that its precisely in this limit that the fluctuations of the order parameter are small relative to the most probable configuration (17). This enables us to use standard field-theoretical methods to find the free energy of the system and the order-parameter correlator in the region of strong thermodynamic fluctuations.

3. Replica method and instantons

To average the logarithm of the partition function (9a) over \(\tau(r) \) with weight \(1 \) we use the replica method, which permits the averaging to be carried out in explicit form.\(^{26}\)

We express the average free energy (9a) of the system in the form

\[
F = -T \lim_{n \to \infty} \frac{1}{n} \langle 2^{n} \rangle - 1.
\]

(21)

To calculate \(\langle 2^{n} \rangle \) in accordance with the idea of the replica method, we assume first \(n \) to be an arbitrary integer. Expanding \(\langle 2^{n} \rangle \) in terms of an \(n \)-fold functional integral over the fields of the replicas \(A_i(r), \Delta_i(r), \alpha = 1, \ldots, n \) and carrying out the exact Gaussian averaging over \(r(r) \) we get

\[
\langle 2^{n} \rangle = \langle D\{A_\alpha, \Delta_\alpha\} \rangle \exp \left[-S_\alpha(A_\alpha, \Delta_\alpha) \right].
\]

(22)

\[
S_\alpha(A_\alpha, \Delta_\alpha) = \int dr \left\{ \sum_{\alpha} \frac{\partial^2 \mathcal{U}_\alpha(r)}{\partial A_\alpha^2} + \frac{N(E_\alpha)}{2} \sum_{\alpha} \left\{ A_\alpha^2 + \frac{1}{2} \Delta_\alpha^2 \right\} \right\}.
\]

(23)

Note that the random quantities \(\tau(r) \) have already dropped out of these expressions, and that the action \(S_\alpha(A_\alpha, \Delta_\alpha) \) is translationally invariant. For the mean value of the order-parameter correlator (9b) we get

\[
\langle \Delta(r) \Delta(r') \rangle = \lim_{n \to \infty} \frac{1}{n} \int D\{A_\alpha, \Delta_\alpha\} \exp \left[-S_\alpha(A_\alpha, \Delta_\alpha) \right] \sum_{\alpha} \Delta_\alpha(r) \Delta_\alpha(r'),
\]

(24)

where we have symmetrized over the replica indices.

Far from the region of strong fluctuations of the order parameter \(\tau_D \ell \rho \Delta_{\rho}(r) \) the functional integrals (22) and (23) can be calculated by the saddle-point method. The extremal trajectories are classical solutions for the action (22), and when calculating the functional integrals account must be taken of the Gaussian fluctuations about them. The extremal trajectories are defined by

\[
\tau = \lambda \Delta_{\rho}^2 (r) - \sum_{\alpha} \Delta_\alpha^2 (r) \Delta_{\rho}(r) = 0, \quad A_{\alpha}(r) = 0.
\]

(25)

These equations for \(\Delta_{\rho}(r) \) have a spatially homogeneous solution and localized (instanton) solutions. The latter correspond at \(\tau > 0 \) to superconducting drops. We confine ourselves in this article to considerations of non-interacting drops and consider only instanton solutions above \(T_c \), (\(\tau > 0 \)). We shall be interested hereafter only in those solutions that admit analytic continuation as \(n \to 0 \). We designate them \(\Delta_{\text{int}}(r) \), where the superscript \(\ell \) labels the type of solution. To find their contribution we must expand the action (22) accurate to terms quadratic in the deviations \(\varphi_{\alpha}(r) = \Delta_{\alpha}(r) - \Delta_{\text{int}}(r) \). It is shown in the Appendix that the fluctuations of the fields \(\Delta_{\alpha}(r) \) can be neglected when isolated seeds are considered. The action (22) then takes the form

\[
S_{\alpha}(\Delta_\alpha) = S_{\alpha}(\Delta_{\text{int}}) + \frac{1}{2} \sum_{\alpha} \left(\varphi_{\alpha} \Delta_{\text{int}}^{\alpha} \varphi_{\alpha} \right).
\]

(26)

To calculate the functional integral over the fields \(\varphi_{\alpha} \) we expand them in terms of the normalized eigenfunctions of the operator \(\overline{\mathcal{M}} \);\(^{27}\)

\[
\varphi_{\alpha}(r) = \sum_{\alpha} c_{\alpha} \varphi_{\alpha}(r), \quad \sum_{\alpha} \varphi_{\alpha}^{\alpha} \varphi_{\alpha} = \varepsilon, \quad \varepsilon = 1.
\]

(27)

Substitution of (36) in (25) yields for the action the expression

\[
S_{\alpha}(\Delta_\alpha) = S_{\alpha}(\Delta_{\text{int}}) + \frac{1}{2} \sum_{\alpha} \varepsilon c_{\alpha}^{2} \epsilon_{\alpha}.
\]

(28)

The Gaussian functional integral in (22) is calculated by replacing the integration variables

\[
\int D\{\varphi\} \to \prod_{\alpha} \int \frac{d\varphi_{\alpha}}{(2\pi)^{3/2}},
\]

(29)

and its value is determined by the eigenvalue spectrum of the operator \(\overline{\mathcal{M}} \).

At \(\lambda = 0 \) Eqs. (24) are symmetric with respect to rotations in replica space, and admit of solutions of the form\(^{27}\)

\[
\Delta_{\text{int}}(r) = \Delta_{\alpha}(r) \Delta_{\alpha}(r) = \frac{\lambda}{4} \sum_{\alpha} \frac{\varphi_{\alpha} \Delta_{\text{int}}^{\alpha} \varphi_{\alpha}}{(2\pi)^{3/2}},
\]

(30)

Bukovec et al.
thermodynamic fluctuations

4. Pre-exponential factor in the case of strong S,(r) replica-field dyadynamic fluctuations, and the action on them is given by S,(r) from (18) at \(\lambda = 0 \).

At \(\lambda \neq 0 \) this symmetry of the action (22) is violated by the term \(\Delta^{(i)}_{\alpha} = \frac{\partial}{\partial r} \Delta_{\alpha}(r) \delta_{\alpha}, \quad \alpha = 1, \ldots, n. \)

The function \(\Delta_{\alpha}(r) \) is defined in (17) and the index \(\alpha \) characterizes the direction, in replica space, along which spontaneous symmetry breaking takes place. A number of important relations between the integrals of the function \(\gamma(x) \) can be found by noting that Eq. (18) can be obtained from the condition that the functional \(A(x(r)) \) (19b) have an extremum with respect to \(x(x) \). To this end, we replace \(x(x) \) in it by \(\alpha x(\beta x) \). The minimum of the function \(A(x, \beta) \) with respect to \(x \) and \(\beta \) should be reached at \(\alpha = \beta = 1 \), so that

\[
\int_0^1 dx x^2 (\gamma(x)) = \frac{1}{2}, \quad \int_0^1 dx x^2 (\gamma'(x)) = \frac{1}{4}, \quad \int_0^1 dx x^2 (\gamma'(x)) = \frac{A}{8x} \tag{31}
\]

The action (22) on the instanton solution (30) is equal to the value of \(S_{\alpha}(r) \) given in (19a). It follows from (22) that the instanton contribution to \(\gamma(x) \) is proportional to \(\exp[\gamma(x)] \), where the factor \(\gamma \) is the result of summation of contributions of all \(n \) types of solutions (30). Substituting this in (21), we get for the free energy of the seeds

\[
F_s = -\sum_{\alpha=1}^n q_{\alpha}(r) \Delta_{\alpha}(r) \delta_{\alpha}, \tag{32}
\]

Its eigenfunctions are

\[
q_{\alpha}(r) = \frac{\phi_\alpha(r)}{\delta_{\alpha}}, \quad \phi_{\alpha}(r) = \frac{\phi_{\alpha}(r)}{\delta_{\alpha}}, \quad \beta_{\alpha}, \tag{33}
\]

where the functions \(\phi_{\alpha}(r) \) are the solutions of the eigenvalue equations for the operators \(M_{\alpha, x} \):

\[
M_{\alpha, x} \phi_{\alpha}(r) = \epsilon_{\alpha} \phi_{\alpha}(r) \tag{34}
\]

These equations have the form of Schrödinger equations with the potential \(U_{\alpha, x}(r) \) shown schematically in Fig. 1.

Let us examine the spectrum of these equations. The potential \(U_{\alpha}(r) \) always have a discrete level with zero eigenvalue \(\epsilon_1 = 0 \). Its presence is connected with the translational symmetry of Eq. (22). A solution of (24), other than (30) and having the same action, is the function \(\Delta^{(i)}_{\alpha}(r + r_0) \) with a shift of the localization center by an arbitrary vector \(r_0 \). The corresponding deviation \(\phi_{\alpha}(r) \) following a translation by an infinitely small vector \(\delta_{\alpha} \) takes the form

\[
q_{\alpha}(r) = \begin{cases} \Delta_{\alpha}(r + \delta_{\alpha} - \Delta_{\alpha}(r_0)) \delta_{\alpha} & (r_0) \\ \Delta_{\alpha}(r_0) \frac{\partial}{\partial r} \phi_{\alpha}(r_0) & \text{else}
\end{cases} \tag{35}
\]

This expression in (21) is shifted from \(r_0 \) by an arbitrary vector \(\delta_{\alpha} \). The corresponding deviation from \(\alpha \) and \(\beta \) should be reached at \(\alpha = \beta = 1 \), so that

\[
\int_0^1 dx x^2 (\gamma(x)) = \frac{1}{2}, \quad \int_0^1 dx x^2 (\gamma'(x)) = \frac{1}{4}, \quad \int_0^1 dx x^2 (\gamma'(x)) = \frac{A}{8x} \tag{31}
\]

The action (22) on the instanton solution (30) is equal to the value of \(S_{\alpha}(r) \) given in (19a). It follows from (22) that the instanton contribution to \(\gamma(x) \) is proportional to \(\exp[\gamma(x)] \), where the factor \(\gamma \) is the result of summation of contributions of all \(n \) types of solutions (30). Substituting this in (21), we get for the free energy of the seeds

\[
F_s = -\sum_{\alpha=1}^n q_{\alpha}(r) \Delta_{\alpha}(r) \delta_{\alpha}, \tag{32}
\]

Its eigenfunctions are

\[
q_{\alpha}(r) = \frac{\phi_\alpha(r)}{\delta_{\alpha}}, \quad \phi_{\alpha}(r) = \frac{\phi_{\alpha}(r)}{\delta_{\alpha}}, \quad \beta_{\alpha}, \tag{33}
\]

where the functions \(\phi_{\alpha}(r) \) are the solutions of the eigenvalue equations for the operators \(M_{\alpha, x} \):

\[
M_{\alpha, x} \phi_{\alpha}(r) = \epsilon_{\alpha} \phi_{\alpha}(r) \tag{34}
\]

These equations have the form of Schrödinger equations with the potential \(U_{\alpha, x}(r) \) shown schematically in Fig. 1. Let us examine the spectrum of these equations. The potential \(U_{\alpha}(r) \) always have a discrete level with zero eigenvalue \(\epsilon_1 = 0 \). Its presence is connected with the translational symmetry of Eq. (22). A solution of (24), other than (30) and having the same action, is the function \(\Delta^{(i)}_{\alpha}(r + r_0) \) with a shift of the localization center by an arbitrary vector \(r_0 \). The corresponding deviation \(\phi_{\alpha}(r) \) following a translation by an infinitely small vector \(\delta_{\alpha} \) takes the form

\[
q_{\alpha}(r) = \begin{cases} \Delta_{\alpha}(r + \delta_{\alpha} - \Delta_{\alpha}(r_0)) \delta_{\alpha} & (r_0) \\ \Delta_{\alpha}(r_0) \frac{\partial}{\partial r} \phi_{\alpha}(r_0) & \text{else}
\end{cases} \tag{35}
\]
FIG. 2.

imum eigenvalue ε^*_2 should correspond to a nondegenerate state with $m = 0$. The operator M_0 should have thus at least one negative eigenvalue $\varepsilon^*_2 < \varepsilon^*_1 = 0$. A more rigorous analysis (Ref. 28) shows that such an eigenvalue is unique. The remaining eigenvalues ε^*_k with $k > 1$ are positive. The described eigenvalue spectrum of the operator M_0 is shown in Fig. 2.

We consider now the eigenvalue spectrum of the operator M_E. The quantity ρ_0 in (38) is positive only if the operator M_E has a single negative eigenvalue. We shall show below that this situation is realized if the condition $0 < \lambda < \lambda_* = 2\gamma/3$, is met, a condition that defines in fact that region of existence of superconducting drops. The spectrum of the eigenvalues of the operator M_E is shown in Fig. 2.

In the case $\lambda \neq \lambda_*$ the minimum eigenvalue $\varepsilon^*_2 < 0$ can be obtained by perturbation theory in the small parameter λ / λ_*. At $\lambda = 0$ the operator M_0 (32) has a single zero eigenvalue $\varepsilon^*_0 = 0$. The corresponding Goldstone mode is connected with the isotropy of Eqs. (24) in replica space, and corresponds to rotation of the unit vector ε_0 (29) in replica space

$$e_0(r) = \frac{1}{\beta^2} (r^T) \bar{e}_0 = \frac{1}{\beta^2} \bar{e}_0 (r).$$

where the normalization component J_2 and the function Q_2 are equal to

$$Q_2(r) = J_2^2 \bar{e}_0 (r), \quad J_2 = \int dr J_2 (r) = S_0(T)/2E_r.$$

It is easy to verify that the function (40) at $\lambda = 0$ is indeed a solution of Eq. (34) with zero eigenvalue $\varepsilon^*_2 = 0$. Comparing (39) with (26) we obtain the relation

$$e^*_0 = J_2^2 \bar{e}_0.$$

At small $\lambda \neq \lambda_*$ we can neglect the change of the eigencfunction (40) of the operator M_0. Its minimum eigenvalue ε^*_2 is obtained by multiplying both halves of Eq. (34) for ε^*_2 and by integrating with respect to the coordinate r:

$$\varepsilon^*_2 = -2N(E_r) \int dr \Delta_2^2 (r) = -\frac{8\pi}{\gamma},$$

where we have used relations (17) and (30). The condition for the validity of the approach based on the instanton solutions (30) can be formulated in the form (41) of $\lambda^* \neq \lambda_*$. Since, as follows from (27), the characteristic values $[\varepsilon^1_2]^{-1}$ are proportional to $[\varepsilon^1_2]^{-1}$, this condition takes the form $\lambda > \lambda_*$ for ε^*_2. The opposite case of small λ was considered above using the Ioffe-Larkin approach. If $\gamma S^1_\lambda (r) \ll \varepsilon^*_2 = 2\gamma/3$, all the eigenvalues of the operator M_0, except ε^*_2, can be calculated under the assumption that $\lambda = 0$, and the eigenvalue ε^*_2 is given by Eq. (42). It is easily seen that in this case all the eigenvalues of the operators M_2 and M_1, except ε^*_2 and ε^*_1, are proportional to $\gamma N(E_r) / T$, close and are independent of γ and λ. A dimensional estimate of the ratio of their determinants yields therefore

$$|\text{det} M \text{det} M_1| = [\gamma N(E_r) / T]^2.$$

Substituting (42) and (43) in (38) we get

$$\rho_0 (\gamma) = -\frac{1}{2\gamma} \left(\frac{\lambda}{\lambda_*} \right) \int \frac{d\lambda}{2\gamma} \left(\frac{\lambda}{\lambda_*} \right) \left[\frac{\lambda}{\lambda_*} \right]^{1/2} \exp [\gamma S^1_\lambda (r)].$$

When calculating the order-parameter correlator (23) it suffices to take into account in the pre-exponential factor only the fluctuations due to the translational mode with zero eigenvalue:

$$\Lambda_\lambda (r) = \Lambda_\lambda (r) \delta_0 + \psi^*_1 (r) \Delta_1 (r + \tau_0) \delta_0.$$

We obtain as a result

$$\Delta (r, 38) \Delta (r') = \rho_0 (\gamma) \int \frac{d\lambda}{2\gamma} \left(\frac{\lambda}{\lambda_*} \right) \left[\frac{\lambda}{\lambda_*} \right]^{1/2} \exp [\gamma S^1_\lambda (r)].$$

The integration with respect to the coordinate r_0 in (46) means in fact averaging over different drop-localization positions. After averaging, the correlator (46) depends only on the coordinate difference. Note that in view of the possible scatter of the drop amplitudes the parameter does not determine their density. To find the latter we must obtain the distribution of the drop amplitudes. At $\lambda \neq \lambda_* = 2\gamma/3$ the operators M_2 and M_1 coincide. Accordingly, all their eigenvalues are equal and the operator M_0 has a single negative eigenvalue $\varepsilon^*_2 = 0$. At small $\lambda \neq \lambda_*$ we obtain the eigenvalue ε^*_2 by perturbation theory with the aid of the corresponding function (36):

$$\varepsilon^*_2 = -\frac{2N(E_r)}{T} \frac{d\Delta_2^2 (r)}{dr} = -\frac{8\pi}{\gamma}.$$

The remaining eigenvalues of the operator M_0 are positive at $\lambda < \lambda_*$. Using the result (47) for ε^*_2 and setting the remaining $\varepsilon^*_k = \varepsilon^*_1 = \varepsilon^*_2$ for $k \neq 0$, we obtain at $\lambda = \lambda$:

$$\varepsilon^*_k = -\frac{1}{2\gamma} \left(\frac{\lambda}{\lambda_*} \right) \left[\frac{\lambda}{\lambda_*} \right]^{1/2} \exp \left(-S_\lambda (r) \right),$$

$$\frac{\lambda}{\lambda_*} = 0.64 \left(\frac{\tau_0}{\gamma} \right)^2.$$

As $\lambda \neq \lambda_*$ the eigenvalue $\varepsilon^*_2 = 0$ and account must be taken of the non-Gaussian character of the field fluctuations $\phi_\lambda (r)$. These fluctuations can lead to a change of relation (48) in the region of small $\lambda \neq \lambda_*$.

In the calculation of the order-parameter correlator it is necessary, in the case $\lambda \neq \lambda_*$, to take into account in (23), besides the zeroth translational mode, also the contribu-
bution of \(n - 1 \) modes of the operator \(\hat{M} \), with eigenvalues \(\epsilon_1^2 \) that tend to zero as \(k \rightarrow 0 \). Neglecting the contribution of the remaining mode, we can, in analogy with the derivation of (45), replace in (23) the quantity

\[
\sum_{s=1}^{n-1} \Delta s(t) \Delta s'(t')
\]

by

\[
\pi \Delta \left(r + \sum_{s=1}^{n-1} \epsilon_s \right) \Delta \left(r' + \sum_{s=1}^{n-1} \epsilon_s \right).
\]

(49)

Integrating over all the coefficients \(\epsilon_s \) in (28) and (23), we obtain for the order parameter the results (46), where the factor \(\delta \) defined in (38). Note that over large scales the function (43) decreases like \(\exp \left(-|r - r'|/\xi(T) \right) \) and does not contain the Ornstein-Zernike factor \(|r - r'|^{-1} \).

CONCLUSION

We have shown here that in the case of sufficiently strong statistical fluctuations of the order parameter \(r_0 > \xi^2 \), superconductivity is produced in the form of isolated seeds-superconducting drops. We found the free energy of such an inhomogeneous superconducting state and the field \(H \):

\[
\sum_{s=1}^{n-1} \Delta s(t) \Delta s'(t')
\]

by

\[
\pi \Delta \left(r + \sum_{s=1}^{n-1} \epsilon_s \right) \Delta \left(r' + \sum_{s=1}^{n-1} \epsilon_s \right).
\]

integrating over all the coefficients \(\epsilon_s \) in (28) and (23), we obtain for the order parameter the results (46), where the factor \(\delta \) defined in (38). Note that over large scales the function (43) decreases like \(\exp \left(-|r - r'|/\xi(T) \right) \) and does not contain the Ornstein-Zernike factor \(|r - r'|^{-1} \).

CONCLUSION

We have shown here that in the case of sufficiently strong statistical fluctuations of the order parameter \(r_0 > \xi^2 \), superconductivity is produced in the form of isolated seeds-superconducting drops. We found the free energy of such an inhomogeneous superconducting state and the field \(H \):

\[
\sum_{s=1}^{n-1} \Delta s(t) \Delta s'(t')
\]

by

\[
\pi \Delta \left(r + \sum_{s=1}^{n-1} \epsilon_s \right) \Delta \left(r' + \sum_{s=1}^{n-1} \epsilon_s \right).
\]

integrating over all the coefficients \(\epsilon_s \) in (28) and (23), we obtain for the order parameter the results (46), where the factor \(\delta \) defined in (38). Note that over large scales the function (43) decreases like \(\exp \left(-|r - r'|/\xi(T) \right) \) and does not contain the Ornstein-Zernike factor \(|r - r'|^{-1} \).

CONCLUSION

We have shown here that in the case of sufficiently strong statistical fluctuations of the order parameter \(r_0 > \xi^2 \), superconductivity is produced in the form of isolated seeds-superconducting drops. We found the free energy of such an inhomogeneous superconducting state and the field \(H \):

\[
\sum_{s=1}^{n-1} \Delta s(t) \Delta s'(t')
\]

by

\[
\pi \Delta \left(r + \sum_{s=1}^{n-1} \epsilon_s \right) \Delta \left(r' + \sum_{s=1}^{n-1} \epsilon_s \right).
\]

integrating over all the coefficients \(\epsilon_s \) in (28) and (23), we obtain for the order parameter the results (46), where the factor \(\delta \) defined in (38). Note that over large scales the function (43) decreases like \(\exp \left(-|r - r'|/\xi(T) \right) \) and does not contain the Ornstein-Zernike factor \(|r - r'|^{-1} \).

CONCLUSION

We have shown here that in the case of sufficiently strong statistical fluctuations of the order parameter \(r_0 > \xi^2 \), superconductivity is produced in the form of isolated seeds-superconducting drops. We found the free energy of such an inhomogeneous superconducting state and the field \(H \):

\[
\sum_{s=1}^{n-1} \Delta s(t) \Delta s'(t')
\]

by

\[
\pi \Delta \left(r + \sum_{s=1}^{n-1} \epsilon_s \right) \Delta \left(r' + \sum_{s=1}^{n-1} \epsilon_s \right).
\]

integrating over all the coefficients \(\epsilon_s \) in (28) and (23), we obtain for the order parameter the results (46), where the factor \(\delta \) defined in (38). Note that over large scales the function (43) decreases like \(\exp \left(-|r - r'|/\xi(T) \right) \) and does not contain the Ornstein-Zernike factor \(|r - r'|^{-1} \).
\[
\Theta = \exp \left[\frac{-2eN(E_F)}{c^2T} \sum r \right. \\
\left. + \frac{2eN(E_F)A^2}{c^2T^2} \sum \frac{1}{4} \int dr \Delta_i(r) \Delta_j(r - \Delta_i(t)}
\right].
\]

The first term in the exponential of (A.5) gives the renormalization of the superconducting-transition temperature. It is the same for both the spatially homogeneous state and for drops, and can hereafter be regarded as carried out. The second term in the exponential of (A.5) describes the influence of the screening of the fluctuating magnetic field on the form of superconducting seed. Substituting in (A.5) the instanton solutions for \(\Delta_i(r) \) and integrating with respect to \(r \) and \(r' \), we obtain the condition under which this term in (A.4) is small and the influence of the magnetic field on the drop is negligible, in the form

\[\int \delta^2(r) \frac{\Delta_0^2}{\Delta_i^2(T)} \frac{T}{V} \]