Local optical oscillations near point and extended defects in ionic crystals

A. M. Kosevich

Physicotechnical Institute for Low Temperatures, Ukrainian Academy of Science

V. A. Pogrebnyak

Institute of Radiophysics and Electronics, Ukrainian Academy of Sciences

Submitted 4 May 1982


It is shown that the vector-like field of the relative displacements of the ions in the unit cell during optical oscillations of an ionic crystal leads to a nonexponential (power-law) decrease of the amplitude of the local optical oscillations at large distances from point and linear defects. In the case of a planar defect the amplitude decreases exponentially over a macroscopic distance equal to the wavelength. The dispersion laws of oscillations localized near linear and planar defects are obtained.

PACS numbers: 78.20. — e, 61.70.Ey

The theory of local oscillations in a crystal have been quite fully developed and expounded in detail in many reviews and monographs (see, e.g., Refs. 1–4). Principal attention was paid in the study of defects to the spectrum of the local oscillations; there was little interest in the coordinate dependence of the local-oscillation amplitude. It turns out, however, that in ionic crystals, where the mechanical oscillations of the atoms are inevitably connected with electric fields, the question of the coordinate dependence is not trivial and is worthy of a detailed examination.

We consider in this paper optical local oscillations near various types of defects in an ionic crystal and discuss the nonexponential dependence of the local-oscillation amplitude near point and linear defects.

It is customarily assumed that the amplitude of a local oscillation of a crystal with a point or linear defect (the discrete local-oscillation frequencies lies outside the continuous frequency spectrum of an ideal crystal) decreases exponentially with the distance from the defect. A similar decrease takes place in the wave function of an electron localized near a short-range attraction center in a crystal. The electron wave function, however, is a scalar quantity, so that the character of the decrease of the function itself is the same as that of its gradient. The crystal oscillations are described by a vector function, therefore the character of the decrease of the displacement itself and of its divergence or curl can be different. When it comes to optical oscillations of an ionic crystal, they are inevitably connected with quasistatic electric oscillations that manifest themselves differently when the oscillations are longitudinal and transverse. As a result the decrease of the local-oscillation amplitude may turn out to follow a power law. This was already pointed out in an investigation of impurity absorption of infrared in ionic crystals.

We discuss here both the physical and the formal causes of the nonexponential amplitude decrease of local optical oscillations in an ionic crystal such as NaCl.

1. POINT DEFECT

The coordinate dependence of the relative atom displacements \( \xi \) that describe the local oscillations near a symmetric point defect is given by the expression

\[
\xi_{\alpha}(\mathbf{r}) = a U G^\alpha_{\alpha} \hat{n}_\alpha(\mathbf{r}) \xi_{\alpha}(0),
\]

where \( G^\alpha_{\alpha} \) is the Green's tensor of the stationary oscillations of an ideal crystal, \( U \) is the intensity of the perturbation introduced by the defect (in the case of an isotopic defect \( U = \omega^2 \Delta \mu / \mu \), where \( \Delta \mu = \mu - \mu_0 \) is the defect of the reduced mass of the atom pair in the unit cell of the crystal), and \( \omega \) is the atomic volume.

It is shown (see, e.g., Ref. 2) that in a crystal of the NaCl type the internal electric field splits the long-wave edge (\( k = 0 \)) of the optical branch into a longitudinal oscillations (with limiting frequency \( \omega_L \)) and two degenerate transverse oscillations (with limiting frequency \( \omega_T \)). The frequencies \( \omega_L \) and \( \omega_T \) are connected by the relation \( \omega_L^2 = \omega_T^2 + 4 \omega_R^2 / \omega_T^2 \). The difference between the frequencies \( \omega_L \) and \( \omega_T \) is the main effect of the action of the quasistatic electric field on the dynamics of the mechanical oscillations of the ionic crystal. It is this which is the main cause of the power-law decrease of the Green's function at large \( |\mathbf{r}| \).

In a number of crystals, for example NaCl, KI, KBr, and KC1 the frequency \( \omega_L \) is the maximum frequency of the long-wave longitudinal optical mode. In a coordinate system connected with the principal crystallographic axes of the crystal the dispersion of the longitudinal oscillations at small values of the wave vector \( k \) can be expressed in the form

\[
\omega_L^2(k) = \omega_0^2 \left[ 1 - m (\mathbf{b} \cdot \mathbf{k}) - n (\mathbf{b} \cdot \mathbf{k})^2 / k^2 \right],
\]

where \( m \) and \( n \) are different for crystals are given in Ref. 6, where it is indicated that \(|n| > |m|\) for a number of crystals.

Consider a defect whose local oscillations have a frequency \( \omega \) close to the edge of the longitudinal optical mode: \( \omega > \omega_L \) and \( \omega - \omega_L \Delta \mu \), (this case can take place, for example, at \( \Delta \mu = 0 \). The Green's tensor of the considered crystal is then determined in the long-wave approximation mainly by its "longitudinal" part

\[
G^\alpha_{\alpha}(r) = \frac{1}{(2\pi)^3} \int \frac{n \rho \rho_0 e^{i \mathbf{r} \cdot \mathbf{k}}}{|\mathbf{a}^0 - \mathbf{b}^0 - \mathbf{P}(\mathbf{r})|} d^3k,
\]

where \( \mathbf{a} \) is a unit vector in the \( \mathbf{k} \) direction, and the function
\[ \beta^2(n) = \beta^2(n_{a}^{\pm}n_{a}^{\pm}n_{a}^{\pm}n_{a}^{\pm}). \] (4)

This includes the projections \( n_{a}^{\pm}n_{a}^{\pm}n_{a}^{\pm}n_{a}^{\pm} \) of the unit vector on the crystallographic axes of the cubic crystal.

For a more lucid illustration of the calculation of the main contribution to the integral in (3), we consider first a spherical dispersion law, when \( \beta^2(n) = \beta^2 = \text{const} \), and then take into account deviations from sphericity.

We direct the \( z \) axis along the vector \( r \) and consider the asymptotic behavior, as \( r \to \infty \), of the element \( i = j = z \) of the tensor (3)

\[
G_n^z(\mathbf{r}) = -\frac{1}{2\pi} \int \frac{dk^2}{2p^2} \left[ \frac{1}{\beta r} \left( \frac{1}{r^2} + \frac{1}{r} \right) e^{-\omega_n \beta r} \right],
\] (5)

where \( \omega_n = \omega_0^2 - \alpha_0^2 \). It can be seen that (5) contains components of two types. The first, traditionally discussed, contains a factor of the exponential \( \exp(-\beta r/\ell) \) and decreases over distances on the order of several lattice constants; it is "generated" by elastic forces. The main contribution to the pre-exponential factor of this component is made at large distances \( r \gg 1/\ell \), is unexpected from the viewpoint of defect-containing crystals with non electrostatic interaction, and reflects in fact the long-range interaction in ionic crystals. At distances \( r > \ell / \beta \) the components of the first type can be left out, and we are left only with the last term of (5), proportional to \( 1/r^3 \).

Analysis of the remaining elements of the Green's tensor of the optical oscillations leads to the conclusion that its asymptotic form describes a dipole field

\[
G_n^x(\mathbf{r}) = \frac{1}{4\pi} \frac{1}{\omega_0^2 - \omega_n^2} \frac{r^2}{r^2}.
\] (6)

The asymptotic form (6) thus causes the relative displacements \( \mathbf{r} \to \infty \) to have a coordinate dependence described by a power-law decrease. Expression (6) was in fact obtained in the long-range interaction in ionic crystals. At distances \( r > \ell^2 / \beta^2 \), the components of the first type can be left out, and we are left only with the last term of (5), proportional to \( 1/r^3 \).

At all the allowed values of \( \omega_0^2 - \omega_n^2 \) the spectrum of the operator \( \hat{L} \) is gapless (it begins with zero), so that it is not at all surprising that the eigensolutions of (8) decrease nonexponentially with distance. Clearly, the decrease of the eigensolutions of (8) with distance is determined by the coordinate dependence of the Green's tensor of the operator \( \hat{L} \). In the usual situation one studies the Green's function of the operator \( \hat{L} - \beta^2 \hat{A} \), which decreases exponentially with distance like \( \exp(-\beta r) \). This coordinate dependence sets the coordinate dependence of the function \( \xi(x) \) at large distances, however, follows then a power law, since the function \( \xi(x) \) determines in fact the distribution function of a field of electrostatic type:

\[
\xi(x) = \Lambda \xi, \quad \text{rot } \Lambda = 0.
\]

Thus, in an ionic crystal the relative displacements at large distances from a defect should have a power-law decrease. The polarization field of the crystal, \( \mathbf{P} = \rho/a_0^2 \mathbf{E} \), behaves similarly: the density \( \rho = \text{div } \mathbf{P} \) of the bound charge decreases exponentially while the polarization vector has a power-law decrease. The same can be said concerning the electric field \( \mathbf{E} \). It follows from the latter that the dynamic interaction between the considered defects in an ionic crystal has a power-law dependence on the distance between the defects, and this determines the specific concentration effects.

We proceed now to investigate the influence of the nonsphericity of the dispersion (2) on the coordinate dependence of the Green's tensor. We transform (3) into

\[
G_n^x(\mathbf{r}) = \frac{1}{2\pi} \int \frac{dk^2}{2p^2} \partial_x \mathbf{A}(\mathbf{k}) \cdot \hat{\mathbf{e}}(\mathbf{r}),
\] (7)

where \( \hat{\mathbf{e}}(\mathbf{r}) \) is a solid-angle element in the direction of the unit vector \( n \).

To calculate the integral \( J(r) \) we write \( \hat{\mathbf{e}}(\mathbf{r}) = \hat{\mathbf{e}}(\mathbf{r}) \cos \theta \) and introduce an angle \( \phi \) in a plane perpendicular to the vector \( r \). We can then write

\[
J = \int \frac{d\phi}{2\pi} \int_0^1 d\sin \theta \int_0^{2\pi} d\phi \frac{dk_0 e^{i\mathbf{k_0} \cdot \mathbf{r}}}{\sqrt{\beta^2 + \mathbf{k_0}^2}}.
\] (8)

where \( u = \cos \theta \), and the function \( \beta^2(n, \mathbf{q}) \) contains the angular dependence of the dispersion (2) in a new coordinate
frame. We use the fact that the function $\tilde{\beta}(u, p)$ is symmetric because the initial dispersion law is invariant to the replacement of $k$ by $-k$. After performing the last integration in (10) we then obtain

$$J = \frac{-\pi}{2} \int dp \left[ \frac{\exp[-Qru]}{\tilde{\beta}(u, p)} - \frac{\exp[-Qru]}{\tilde{\beta}(-u, p)} \right].$$

(11)

To find the behavior of the Green's tensor at large distances, we find the asymptotic form of the integral $J$ as $r \to \infty$. The internal integral in (11) can be calculated by the Laplace method. The main contribution to the asymptotic value is given by integration near $u = 0$, so that we can write

$$J = -2\pi \int dp \exp[-Qru]/\tilde{\beta}(0, p) = -\frac{1}{Q^2 r}.$$  

(12)

Substituting (12) in (11) we obtain the final result

$$J = -2\pi/2^2 r.$$

(13)

The asymptotic form of the Green's tensor is consequently

$$G^*_{ij}(r) = -\frac{1}{4\pi \tilde{\beta}} \delta^{ij} \frac{1}{r},$$

(14)

and coincides with (6) in the case of spherical dispersion.

We arrive thus at the very important conclusion that the anisotropy of the dispersion law (2) does not influence the asymptotic form of the Green's tensor, a form characterized by a power-law decrease at large distances. Peculiarities of the dispersion law, however, can manifest themselves in the behavior of the Green's tensor at short distances from the defect, i.e., when the frequency of the local oscillation is determined.

2. LINEAR DEFECT

In the case of a linear defect, when the perturbation is concentrated, say, on the $z$ axis, the solution of Eq. (8) must be sought in the form

$$\psi = \psi(z, y) \exp(ikz).$$

The operator $\hat{L}$ in (8) is then replaced by a two-dimensional one

$$L = \left( \partial^2/\partial z^2 + A \right) (k_0^2 - \Delta_0) + \Delta \partial^2/\partial z^2 + A \partial^2/\partial y^2,$$

(15)

in which we assume $A = \text{const}$. At a fixed value of $k_0$, the operator $\hat{L}$ has an eigenvalue spectrum with a gap (the spectrum begins with $k_0$). Consequently, at sufficiently large distances the amplitudes of the optical oscillations (if they appear) decrease exponentially (at $k_0 \to 0$). For example, in the case $p > 1/k_0$, we have

$$\psi_{ij}(z, y) = e^{-k_0 z} \sin(k_0 z + \phi) \exp[-Qru]/\tilde{\beta}(0, p - w, z, y),$$

(16)

(17)

(18)

At distances $\beta / 2l < p \ll 1/k_0$, however, a power law decrease of the amplitude sets in, and the displacement field is the field of the linear dipole in the two-dimensional problem. There exist thus intermediate distances $\beta / 2l \ll p \ll 1/k_0$, at which $\xi(z, p, \omega)$ takes the form

$$\psi(z, p, \omega) \sim e^{-Re k_0 z} \exp[-Qru]/\tilde{\beta}(0, p - w, z, y).$$

(19)

(20)

(21)

Putting $z = 0$ in (20) we obtain the dispersion equation for the local oscillations. It breaks up into two independent dispersion-law modes $w^2 = \omega^2(z)$ whose frequencies are given by the relations

$$\omega^2 = \omega^2(z) = \omega^2(z) \left[ \frac{\omega^2}{(2\omega^2 - \omega^2(z))^{1/2}} - \frac{\omega^2}{(2\omega^2 - \omega^2(z))^{1/2}} \right],$$

(22)
where \( \alpha_{1,2} = \alpha_{1,2}^1 - \alpha_{1,2}^2 \) and \( \alpha_{1,2}^1 > 0 \).

Solving (21) and (22) for \( \omega_{1,2}^1 \), we easily obtain the explicit form of the dispersion laws for the first mode (Fig. 1)

\[
\omega_{1}^1(x) = \omega_{1}^0 + \frac{\alpha_{1}^1 \beta_{1}^1}{\alpha_{1}^2 - \omega_{1}^2(x)} x.
\]

and for the second mode

\[
\omega_{2}^1(x) = \omega_{2}^0 + \frac{\alpha_{2}^1 \beta_{2}^1}{\alpha_{2}^2 - \omega_{2}^2(x)} x.
\]

Both dispersion laws correspond to local oscillations \( \omega_{1,2}^0 \) and their eigenfrequencies are separated from the continuous spectrum by some gap. For oscillations of the first type the gap remains finite and equal to \( \omega_{1}^0 - \omega_{1}^2(x) \) and for the second type

\[
\omega_{2}^0 + \frac{\alpha_{2}^2 \beta_{2}^2}{\alpha_{2}^1 - \omega_{2}^1(x)} x.
\]

Both dispersion laws correspond to local oscillations \( \omega_{1,2}^0 \) and their eigenfrequencies are separated from the continuous spectrum by some gap. For oscillations of the first type the gap remains finite and equal to \( \omega_{1}^0 - \omega_{1}^2(x) \) and for the second type

\[
\omega_{2}^0 + \frac{\alpha_{2}^2 \beta_{2}^2}{\alpha_{2}^1 - \omega_{2}^1(x)} x.
\]

The second mode is characterized by the standard decrease of the amplitude with increasing \( x \), which is determined by the local-oscillation frequency, away from the edge of the continuous spectrum:

\[
\omega_{1}^0 - \omega_{1}^2(x) = \frac{\alpha_{1}^2 \beta_{1}^2}{\alpha_{1}^1 - \omega_{1}^1(x)} x.
\]

As expected, the interaction \( \omega_{1}^0 \) leads to "pushing apart" of the modes at the intersection point and has little effect on the dispersion law (21)-(22) far from this point.

We investigate now the coordinate dependence of the amplitude of the local oscillations. The first type of oscillations corresponds to the following displacement components:

\[
\xi_{1,x} = \xi_{1,y} = \sin(\omega_{1}^0 t) \cos(x/\alpha_{1}^1),
\]

\[
\xi_{1,z} = \sin(\omega_{1}^0 t) \sin(x/\alpha_{1}^1),
\]

where

\[
\xi_{1,x} = \xi_{1,y} = \sin(\omega_{1}^0 t) \cos(x/\alpha_{1}^1),
\]

\[
\xi_{1,z} = \sin(\omega_{1}^0 t) \sin(x/\alpha_{1}^1),
\]

As expected, the interaction \( \omega_{1}^0 \) leads to "pushing apart" of the modes at the intersection point and has little effect on the dispersion law (21)-(22) far from this point.

We investigate now the coordinate dependence of the amplitude of the local oscillations. The first type of oscillations corresponds to the following displacement components:

\[
\xi_{1,x} = \xi_{1,y} = \sin(\omega_{1}^0 t) \cos(x/\alpha_{1}^1),
\]

\[
\xi_{1,z} = \sin(\omega_{1}^0 t) \sin(x/\alpha_{1}^1),
\]

where

\[
\xi_{1,x} = \xi_{1,y} = \sin(\omega_{1}^0 t) \cos(x/\alpha_{1}^1),
\]

\[
\xi_{1,z} = \sin(\omega_{1}^0 t) \sin(x/\alpha_{1}^1),
\]

As expected, the interaction \( \omega_{1}^0 \) leads to "pushing apart" of the modes at the intersection point and has little effect on the dispersion law (21)-(22) far from this point.

We investigate now the coordinate dependence of the amplitude of the local oscillations. The first type of oscillations corresponds to the following displacement components:

\[
\xi_{1,x} = \xi_{1,y} = \sin(\omega_{1}^0 t) \cos(x/\alpha_{1}^1),
\]

\[
\xi_{1,z} = \sin(\omega_{1}^0 t) \sin(x/\alpha_{1}^1),
\]

As expected, the interaction \( \omega_{1}^0 \) leads to "pushing apart" of the modes at the intersection point and has little effect on the dispersion law (21)-(22) far from this point.

We investigate now the coordinate dependence of the amplitude of the local oscillations. The first type of oscillations corresponds to the following displacement components:

\[
\xi_{1,x} = \xi_{1,y} = \sin(\omega_{1}^0 t) \cos(x/\alpha_{1}^1),
\]

\[
\xi_{1,z} = \sin(\omega_{1}^0 t) \sin(x/\alpha_{1}^1),
\]

As expected, the interaction \( \omega_{1}^0 \) leads to "pushing apart" of the modes at the intersection point and has little effect on the dispersion law (21)-(22) far from this point.

We investigate now the coordinate dependence of the amplitude of the local oscillations. The first type of oscillations corresponds to the following displacement components:

\[
\xi_{1,x} = \xi_{1,y} = \sin(\omega_{1}^0 t) \cos(x/\alpha_{1}^1),
\]

\[
\xi_{1,z} = \sin(\omega_{1}^0 t) \sin(x/\alpha_{1}^1),
\]

As expected, the interaction \( \omega_{1}^0 \) leads to "pushing apart" of the modes at the intersection point and has little effect on the dispersion law (21)-(22) far from this point.

We investigate now the coordinate dependence of the amplitude of the local oscillations. The first type of oscillations corresponds to the following displacement components:

\[
\xi_{1,x} = \xi_{1,y} = \sin(\omega_{1}^0 t) \cos(x/\alpha_{1}^1),
\]

\[
\xi_{1,z} = \sin(\omega_{1}^0 t) \sin(x/\alpha_{1}^1),
\]

As expected, the interaction \( \omega_{1}^0 \) leads to "pushing apart" of the modes at the intersection point and has little effect on the dispersion law (21)-(22) far from this point.

We investigate now the coordinate dependence of the amplitude of the local oscillations. The first type of oscillations corresponds to the following displacement components:

\[
\xi_{1,x} = \xi_{1,y} = \sin(\omega_{1}^0 t) \cos(x/\alpha_{1}^1),
\]

\[
\xi_{1,z} = \sin(\omega_{1}^0 t) \sin(x/\alpha_{1}^1),
\]

As expected, the interaction \( \omega_{1}^0 \) leads to "pushing apart" of the modes at the intersection point and has little effect on the dispersion law (21)-(22) far from this point.

We investigate now the coordinate dependence of the amplitude of the local oscillations. The first type of oscillations corresponds to the following displacement components:

\[
\xi_{1,x} = \xi_{1,y} = \sin(\omega_{1}^0 t) \cos(x/\alpha_{1}^1),
\]

\[
\xi_{1,z} = \sin(\omega_{1}^0 t) \sin(x/\alpha_{1}^1),
\]
ment components:
\[ E_x = E_{x0} e^{i(x^2 + y^2)^{1/2}} e^{i(x - at)} \]
\[ E_y = E_{y0} e^{i(x^2 - y^2)^{1/2}} e^{i(x + at)} \]
where \( E_{x0} = E_{x0} e^{i(x^2 + y^2)^{1/2}} \).

An essential feature of this wave is that its amplitude, unlike practically all surface waves (acoustic and electrosonic), it does not contain the wave number \( k \) as a factor. The reason is that the oscillations considered are of the optical type (they do not vanish as \( x \to \infty \)).

At \( z = 0 \) the \( x \) and \( y \) components of the displacements differ from zero, and \( E_0(0) = 0 \). Far from the defect plane, at \( z > \alpha^2 / a^2 \) and \( x \ll \alpha \), the wave is described [in analogy with (25) and (26)] by the following equations:
\[ E_x = E_x e^{i(x^2 + y^2)^{1/2}} e^{i(x - at)} \]
\[ E_y = E_y e^{i(x^2 - y^2)^{1/2}} e^{i(x + at)} \]

The polarization vector in the wave (29) rotates in a direction opposite that of the wave of the first type. As \( x \to \infty \) the oscillations of the second type are transformed into bulk oscillations, so that the gap in their spectrum vanishes as \( x \to \infty \).

In conclusion, we thank G. F. Bass for discussions that stimulated our interest in this problem, as well as M. A. Ivanov, M. A. Krivoglaz, and S. I. Pekar for helpful discussions of the results.

Translated by J. G. Adasheko