Abnormal states of nuclear matter and π condensation

I. V. Krive and E. M. Chudnovskii

Kiev's State University

(Submitted 10 July 1977)

Zh. Eksp. Teor. Fiz. 74, 421–431 (February 1978)

It is shown within the framework of relativistic field models of the πN interaction that the instability of nuclear matter to π condensation becomes stronger when the Fermi velocity tends to the relativistic limit. The results agree with Migdal’s theory and point to the need for taking a condensation into account in the Lee and Wick model for abnormal states of atomic nuclei.

PACS numbers: 21.65.+f

1. INTRODUCTION

There have been discussions in recent years of the possible existence, at nuclear density, of an energy barrier whose surmounting (e.g., in collisions of heavy nuclei) may be the next step towards a genuine ground state of a system of N nucleons. Thus, for example, calculation of the dependence of the nuclear energy on the effective mass M^* of the nucleon, carried out in the α model by Lee and Wick\(^1\) (see also\(^2\)) points to the existence of a local energy minimum at $M^* = 0$. An increase in the density of nuclear matter may make this minimum absolute\(^3\); the nucleus may go over via a relativistic phase transition into an abnormal state with $M^* = 0$.

On the other hand, Migdal’s theory of π condensation\(^4\) (see also later papers by Migdal and co-workers)\(^5\) predicts, at a certain density, the onset of an inhomogeneous classical pion field in the ground state of nuclear matter.

The possibility of π condensation was not considered by Lee and Wick in connection with the problem of abnormal states. The formation of a π condensate in nuclear matter was investigated later, within the framework of the α model of strong interactions, by Dashen, Campbell, and Manasseh.\(^6\) The nonrelativistic approximation used by them does not explain, however, the role of π condensation in the model of abnormal states with $M^* = 0$.

We have investigated the stability of nuclear matter to the appearance in it of a classical pion field, using the relativistic quasi-classical approach employed by Lee and Wick. In this approach the solution of the problem is similar to finding the energy $\epsilon = -(1/2)m^2\pi^2$ of an electron gas in an external magnetic field (π is the magnetic susceptibility). It is known that the susceptibility of an electron gas is positive, but since the electromagnetic interaction constant is small, the susceptibility is small compared with unity. Therefore the decrease of the energy of a metal in an external magnetic field is small compared with the self-energy $\pi^2/4\pi$. The situation changes in theories with strong constants. In particular, the gain in the energy of nucleons situated in a classical pion field can exceed the self-energy of the field and may favor the formation of the π condensate.

Starting with Dirac’s equation, we find the energy of a relativistic nucleon in an inhomogeneous classical (and α) pion field of small amplitude. We construct next...
the single-particle density matrix and calculate the change in the energy of a relativistic gas of nucleons in the field of the n condensate. Comparison of this change with the self-energy of the classical pion field shows that the stability of incompressible nuclear matter relative to n condensation is due to the fact that the parameter

$$\varepsilon_\omega = \alpha - \frac{\beta}{\omega} + \left(\frac{\omega}{\omega_0}\right)^2 \left(\frac{\omega_0}{\omega}\right)^2 \varepsilon_\omega$$

is positive (ε_ω is the n-coupling and ε_ω is the top Fermi velocity), and is lost at $\omega = \omega_0 = 0.11$.

When nuclear matter is considered within the framework of the field approach, it is necessary to give preference to models that take into account the approximate chiral invariance of the strong interaction of non-strange particles. The simplest model of this type is the σ model of strong interactions with spontaneous breaking of the $SU(3)\otimes SU(3)$ chiral symmetry. Proceeding to the investigation of the σ model, we shall show that, depending on the relation between the constants of the model, an increase in the density of the nuclear matter can lead to phase transitions of various types, one of which was considered by Lee and Wick.\(^{(1)}\)

In the absence of an n condensate, the increase of the density is accompanied in accord with the conclusions of Lee and Wick by a decrease of the effective mass of the nucleon. The corresponding increase of the Fermi velocity leads, however, to a strong enhancement of the instability of the nucleon gas to n condensation, and this instability must be taken into account when calculating the ground-state energy. Consideration of abnormal states of nuclear matter with $M^*>0$ and $\omega>0$ is therefore inconsistent.

In the last section of this article we discuss the influence of short-range nucleon-nucleon interaction on the ground-state energy. Allowing for the effect of screening by the in-medium pion field is apparently incapable of changing the conclusion drawn for a nucleon gas, but increases the critical value of the Fermi velocity to $\nu_0 = 0.28$.

2. QUASICLASSICAL RELATIVISTIC MODEL OF π CONDENSATION

The relativistic Lagrangian that describes the interaction of nucleons with the pseudoscalar pion field is given by

$$\mathcal{L} = \frac{1}{2u^2} \left[\frac{1}{2} \mu^2 \partial_\mu \phi_\nu \partial^\mu \phi^\nu - M^2 \phi_\nu \phi^\nu - g \phi^\nu \partial_\mu \phi^\nu \right],$$

where μ and M are the masses of the pion and nucleon, and g is the n-coupling constant.

We consider a model of an incompressible nucleon liquid, in which the short-range forces between the nucleons lead to independence of the nuclear-matter density of the long-wave structure of the ground state. In the absence of p condensate, the nucleon-gas energy is

$$\mathcal{E}_{n} = \frac{1}{2} \int d^3 x \left(\varepsilon_n + \mathcal{C}^n \right),$$

where ε_n is the single-particle density matrix. In isotopically symmetrical nuclear matter, ε_n^0 coincides with the Fermi distribution function ν_γ. In neutron matter we have

$$\mathcal{C}^n = n(x) \varepsilon_n^0.$$

The presence of n condensate corresponds to the appearance, in the system, of a pion field whose mean value $\langle n(x) \rangle_0$ exceeds the self-energy of the Fermi distribution function ε_n^0.

The corresponding change of the nucleon energy is

$$\mathcal{E}_{n} = \frac{1}{2} \int d^3 x \left[\varepsilon_n - \mathcal{C}^n \right],$$

where ε_n and \mathcal{C}^n are the single-particle energy and the single-particle density matrix in the n-condensate field.

To avoid monitoring the constancy of the local density of the nucleons, we calculate their thermodynamical potential $\Omega = \mathcal{E}_{n} + \mathcal{F}_{n} - \mu \nu_\gamma$, where \mathcal{F}_{n} is the total number of particles:

$$\mathcal{F}_{n} = \int d^3 x \left(\nu_\gamma - \mathcal{V}_n \right),$$

and μ is the chemical potential determined from the equation

$$\mathcal{F}_{n} = \int d^3 x \left(\nu_\gamma - \mathcal{V}_n \right) = 0.$$

The instability of nuclear matter to the appearance of the n condensate sets in when the gain $\delta \mathcal{F}_{n}$ of the nucleon energy in the field \mathcal{V}_n exceeds the self-energy of this field

$$\mathcal{F}_{n} = \int d^3 x \left(\frac{1}{2} \mathcal{C}^n \right) + \int d^3 x \left(1 - \frac{1}{2} \mathcal{C}^n \right).$$

To study the stability it suffices to consider fields \mathcal{V}_n of small amplitude. In this case the change of the Fermi density matrix can be expanded in powers of the perturbations of the single-particle energy

$$\mathcal{V}_n = \mathcal{V}_n^0 + \mathcal{V}_n^1 + \mathcal{V}_n^2 + \ldots,$$

where \mathcal{V}_n is the change of the chemical potential and, by virtue of the matrix structure of the perturbation, is of second order of smallness in the amplitude \mathcal{V}_n. Using the property $\mathcal{V}_n + \mathcal{V}_n^0 = n(x) \varepsilon_n^0$ (\mathcal{V}_n is the Fermi energy of the Fermi distribution function), it is easily shown that the change of the thermodynamic potential of the nucleons in the n-condensate field is given by, accurate to terms quadratic in \mathcal{V}_n.

$$\delta \mathcal{F}_{n} = \int d^3 x \left(\mathcal{V}_n^0 \right) \left(\frac{1}{2} \mathcal{C}^n \right) + \int d^3 x \left(\frac{1}{2} \mathcal{C}^n \right).$$

The problem thus reduces to a determination of the single-particle energy \mathcal{V}_n. The Dirac equation for a nucleon in a classical pion field is

$$\left(p^2 - M^2 \right) \varepsilon_n = \mathcal{V}_n \varepsilon_n.$$
We consider the quasiclassical case, when the characteristic inhomogeneity dimension \(q^{-1} \) of the field \(\rho(x) \) is large in comparison with the uncertainty \(p' \) of the nucleon position. In the calculation of the quasiclassical energy of the nucleon \(\varepsilon \), in the field \(\rho(x) \) it is convenient to change over to the Foldy-Wouthuysen (FW) representation. In this representation the operators of the physical quantities have simple classical analogs (see, e.g., \(^{\text{12-13}} \)). In particular, the operator of the particle average position is the usual coordinate operator \(\hat{a}_i = i \hbar a_i / \partial a_i \).

Changing over in (10) to the momentum representation and carrying out the FW transformation with the aid of the unitary operator

\[
\hat{H}_{\text{FW}} = \hat{H} + \frac{i}{2M} \left(\hat{a}_i a_i - \frac{\hbar^2}{2M} \right),
\]

we obtain

\[
\hat{H}_{\text{FW}} = \hat{H} + \frac{i}{2M} \left(\hat{a}_i a_i - \frac{\hbar^2}{2M} \right),
\]

where \(\hat{H}_{\text{FW}} \) is the coordinate operator in the FW representation:

\[
\hat{a}_i = \hat{a} \hat{p}_i, \quad \hat{p}_i = \hat{a}^\dagger \hat{p}_i. \tag{13}
\]

The transition from the FW representation to the quasiclassical Hamiltonian corresponds to replacement of the operator of the average particle position \(\hat{a}_i \) by the coordinate \(x_i \).

Introducing the pseudoscalar singlet \(\pi(\rho, \nu) \) we have in the case of weak inhomogeneity of the classical pion field

\[
\Pi(\rho, \nu) = \Pi(\rho) = \frac{\hbar}{i M} \hat{a}(\rho, \nu) \Pi(\rho) \hat{a}(\rho, \nu)^\dagger,
\]

When this expansion is taken into account the Hamiltonian \(H_{\text{FW}} \) takes the form

\[
H_{\text{FW}} = \frac{\hbar^2}{2M} \left[\hat{p}_i \hat{p}_i + \frac{M^2}{2} \right] + \frac{\hbar^2}{M} \hat{a}_i \hat{a}_i + \frac{\hbar^2}{M} \hat{p}_i \hat{p}_i
\]

where

\[
\hat{h}_i = \frac{\hbar^2}{M} \left(\hat{p}_i + \frac{\hbar}{M} \right), \quad \hat{h}_i = \frac{\hbar}{M} \left(\hat{p}_i + \frac{\hbar}{M} \right). \tag{16}
\]

The spectrum of the particles and antiparticles in a weakly inhomogeneous pion field is determined by the equation for the eigenvalues \(\hat{h}_i \) of the matrix (16)

\[
(\hat{h}_i - \epsilon \Pi(\rho) \Theta(\rho, \nu)^\dagger) \psi_\nu = \epsilon \frac{h}{2M} \psi_\nu.
\]

By calculating from (2) the energy increment due to the change of the nucleon mass and proportional to \(a^2 \), we obtain for the pion effective mass the expression (24).

In the nonrelativistic limit \((p, M) \ll M \) the energy increment goes over into the well-known expression for the relativistic \(\pi N \)-interaction Hamiltonian

\[
\frac{\hbar^2 \epsilon \Theta(\rho) \Theta(\rho, \nu)^\dagger}{2M} \frac{\epsilon \Theta(\rho) \Theta(\rho, \nu)^\dagger}{2M}.
\]

\[
\epsilon \Theta(\rho) \Theta(\rho, \nu)^\dagger = \delta_{\nu} \epsilon \Theta(\rho).
\]

In neutron matter, \(\epsilon = 1 \) goes over into \((1 - 1/2) \), and the Fermi momentum is equal to \((3\rho \nu)^{1/3} \).

We note that when \(\epsilon \) is expanded in powers of \(v_F \) relativistic corrections appear only in the fifth order:

\[
\epsilon = 1 - \frac{1}{3} v_F \epsilon + \ldots.
\]

Therefore the nonrelativistic formula (14) is in fact valid up to \(v_F = 0.6 \).

The renormalization of the pion mass (24) has a simple physical meaning and is connected with the change of the effective mass of the nucleon in a classical pion field. Indeed, the nucleon energy, in the limit of a constant field, takes in accordance with the Dirac equation the form

\[
\epsilon = \sqrt{\epsilon^2 + \frac{\hbar^2}{2M} \Pi(\rho) \Theta(\rho, \nu)^\dagger} = \epsilon \frac{h}{2M} \nu + \ldots.
\]

By calculating from (2) the energy increment due to the change of the nucleon mass and proportional to \(a^2 \), we obtain for the pion effective mass the expression (24).

Proceeding to a discussion of the relativistic formula, we note that the relativism condition \(p, M \ll M \) is satisfied both as a result of the high density of the nucleons (it is more reasonable to refer this case to neutron matter) and as a result of the low effectiveness of the

\[
\frac{\hbar^2 \epsilon \Theta(\rho) \Theta(\rho, \nu)^\dagger}{2M} \frac{\epsilon \Theta(\rho) \Theta(\rho, \nu)^\dagger}{2M}.
\]
nucleon mass.

The function \(l(v, \mu) \) for \(g^2/4\pi = 14.6 \) is plotted in Fig. 1. The reversal of the sign of \(l \) at \(v, \mu = 0 \), points to instability to \(n \) condensation at \(u, \mu > 0 \).

For nuclear matter we have \(v, \mu = 0.3 \). We note, however, that when no account is taken of the short-range nucleon-nucleon interaction, a quantitative estimate of the lower limit of the instability can not be correct in our approach. A more accurate estimate will be made at the end of the article.

Owing to the finite pion mass, instability at a given \(t < 0 \) develops only at pion-field gradients exceeding a certain critical value

\[\phi^0 = m/\pi. \]

The validity of (22) is restricted by the conditions for the applicability of the quasiclassical approximation

\[\phi^0 \ll \mu, M. \]

In the limit of a low effective nucleon mass, the effective pion mass tends to a constant limit \(\mu^2 = \frac{1}{4} \alpha \) that depends only on the nucleon density. If the density increases at a fixed nucleon effective mass, the increase of \(\mu^2 \) follows a faster law than for \(\phi^0 \), and inequality (28) does not hold.

In connection with the foregoing, we call attention to the fact that the renormalization of the masses of the nucleon and the pion in nucleon matter depends substantially on how the bare masses are introduced into the theory. The successes of current algebra and of PCAC in the description of hadron scattering and decays (see, e.g., [17]) point to an approximate chiral invariance of the strong interaction, at least for non-strange particles.

In chiral theories, the pion is a Goldstone particle, and its mass is introduced on account of "soft" violation of the chiral invariance. One can therefore expect in such theories (as we shall show below) that in nucleon matter, in a phase with spontaneously violated chiral invariance, the pion, remaining a Goldstone particle, can have a low effective mass even if renormalization is taken into account. The simplest model of SU(2) chiral-invariant pion-nucleon interaction is the \(\sigma \) model of strong interactions, which we now proceed to consider.

3. \(\sigma \) CONDENSATION IN THE \(\sigma \) MODEL OF STRONG INTERACTIONS

The \(\sigma \) model Lagrangian is

\[S = \frac{1}{2} \left[\frac{\partial \phi^0}{\partial \xi^+} - \frac{\partial \phi^0}{\partial \xi^-} \right] + \frac{1}{4} \left(\phi^0 + \phi^0 \right)^4 \]

where \(\phi \) is a scalar field; \(\mu \) and \(\lambda \) are parameters that can be connected with the physical masses of the particles; \(\xi^+ \) is the part of the Lagrangian that violates explicitly the chiral invariance. In the case of exact SU(2) symmetry of the Lagrangian \(\xi^+ = 0 \), the minimum of the energy of the system of interacting fields are realized in a state with spontaneously broken symmetry of vacuum, when

\[(\phi^0)^2 = \mu^2/\lambda. \]

Chiral rotation makes it possible to choose a gauge in which \(\phi^0 = \phi^0, \phi^+ = \phi^0/\lambda \). In this case the pions are massless Goldstone particles and the masses of the nucleon and scalar \(\sigma \) meson are equal to

\[m_\pi = 2 m/\sqrt{\lambda}. \]

Relativistic phase transition

In the absence of a \(\sigma \) condensate the energy of a system of nucleons interacting with a homogeneous field \(\phi \) is determined in the quasiclassical approximation by the expression

\[S = \frac{1}{4} \left[\frac{\partial \phi^0}{\partial \xi^+} - \frac{\partial \phi^0}{\partial \xi^-} \right] + \frac{1}{4} \left(\phi^0 + \phi^0 \right)^4. \]

Families of \(S(\phi) \) curves for different values of the nucleon density \(n = 2 p/3n_0^2 \) are shown in Fig. 2. A first-order phase transition occurs in the system (curve a of Fig. 3) into a state with restored chiral symmetry. The average scalar field changes jumpwise.
determined from the equation
\[C_\sigma = n_b(3/4 - \mu). \] (40)

In the absence of a \(\sigma \) condensate the presence of \(\Sigma^2 \) does not change the formulas obtained above. In this case \(\mu^2 = -\mu_\sigma \). When chiral invariance is violated by the term \(\Sigma^2 \), the expression of the energy of the nucleons interacting with the field \(\sigma \) goes over into
\[E^{\text{int}} = \mathcal{F}(\sigma) - C_\sigma. \] (41)

In this case a calculation of \(\mu^2 \) similar to the foregoing one yields
\[\mu^2 = C_\sigma/\alpha. \] (42)

The behavior of \(\delta^\mu(\epsilon) \) at different values of the nucleon density was investigated by Lee and Wick in connection with the problem of abnormal states of nuclear matter.\(^{1}\)

When account is taken of a classical weakly inhomogeneous pion field of small amplitude, the energy of the nucleon matter at a given density takes, in accord with the conclusions of the preceding section, for the different types of chiral-invariance violation, the form
\[E^\mu = \mathcal{F}(\epsilon) + \frac{1}{2} \frac{\epsilon}{\alpha} \left(\frac{\Delta \alpha}{\alpha^2} \right)^2 + \frac{1}{2} \frac{\epsilon}{\alpha} (\mu^2 - \mu_\sigma^2). \] (43)
\[E^\mu = \mathcal{F}(\epsilon) - C_\sigma + \frac{1}{2} \frac{\epsilon}{\alpha} \left(\frac{\Delta \alpha}{\alpha^2} \right)^2 + \frac{1}{2} \frac{\epsilon}{\alpha} C_\sigma - \mu^2. \] (44)

where \(\epsilon = \mu_\sigma \) is determined by formula (25), and the Fermi velocity is
\[\nu = (V_{\text{FM}}^2)^{1/2} + (\epsilon - \mu_\sigma)^{1/2}. \] (45)

In the preceding section it was shown that even in the nonrelativistic limit we have \(\epsilon > 0 \) at nuclear density. In the \(\sigma \) model the effective nucleon masses \(M^* \) are smaller than the vacuum value \(M = g_\sigma \rho_\sigma \) (see Fig. 3). Therefore if the condition \(\mathcal{F}(\epsilon) + \delta^\mu(\epsilon) > 0 \) is satisfied in the simplest model of \(\sigma N \) interaction (see above) it is all the more valid, according to formulas (25) and (45), in the \(\sigma \) model.

Since \(\epsilon < \mu_\sigma \) is negative at \(\epsilon > \mu_\sigma \) (Fig. 1), it follows that the minima on the plots of \(\mathcal{F} + \delta^\mu(\epsilon) \) (Fig. 2) are saddle points in the \((\epsilon, \mu)\) space, and the system is unstable to formation of \(\sigma \) condensate.

In concluding this section we emphasize that inasmuch as the instability of the nuclear matter arises in the nonrelativistic region of values of \(\epsilon \), the condition \(\mu_\sigma^2 > 0 \) the second type of violation \(\epsilon_\sigma \) is stronger with increasing Fermi velocity, consideration of the ground state of relativistic nuclear matter without allowance for \(\sigma \) condensation can not be consistent.
EFFECT OF NUCLEON-INTERACTION ON THE PARAMETERS THAT CHARACTERIZE THE INSTABILITY

the classical pion field, which takes place when account is taken of the short-range interaction between the nucleons. For a weakly inhomogeneous ρ condensate this can be done within the framework of the quasiclassical method used by us with the aid of the Fermi-liquid theory.\[lo\]

When account is taken of the short-range NN interaction, the thermodynamic potential of the nucleons in the ρ-condensate field is determined by the formula

\[
\begin{align*}
\delta \mu & = \frac{1}{2} \left[\int \frac{d^3 p}{(2\pi)^3} \left(\rho_{\rho_p} - \rho_{\rho_p}^{\text{th}} \right) \right] \\
& \quad + \frac{1}{2} \left[\int \frac{d^3 p}{(2\pi)^3} \left(\rho_{\rho_p}^{\text{th}} - \rho_{\rho_p}^{\text{th}} \right) \right] \\
& \quad + \frac{1}{2} \left[\int \frac{d^3 p}{(2\pi)^3} \left(\rho_{\rho_p}^{\text{th}} - \rho_{\rho_p}^{\text{th}} \right) \right]
\end{align*}
\]

(46)

where \(\rho_{\rho_p} \) is the density of the interacting nucleons:

\[
\rho_{\rho_p} = \rho_{\rho_p}^{\text{th}} + \frac{1}{2} \rho_{\rho_p}^{\text{th}} - \rho_{\rho_p}^{\text{th}} + \ldots
\]

(47)

and \(F_{\rho_p} \) is the amplitude of the zero-angle nucleon scattering.

The function \(F_{\rho_p} \) can be expanded in the invariant amplitudes and its form in the nonrelativistic limit for isotopically symmetric matter is\[4]\n
\[
F_{\rho_p} = \frac{1}{2 |q|} \left[\int d^3 x \left(\rho_{\rho_p}^{\text{th}} - \rho_{\rho_p}^{\text{th}} \right) \right] \cdot \left(\rho_{\rho_p}^{\text{th}} \right)
\]

(49)

In this case Eq. (48) is readily solved:

\[
\delta \mu = \left(1 + \eta \right) \frac{1}{2 |q|} \left[\int d^3 x \left(\rho_{\rho_p}^{\text{th}} - \rho_{\rho_p}^{\text{th}} \right) \right] + \left(1 + \eta \right) \frac{1}{2 |q|} \left[\int d^3 x \right]
\]

(50)

where \(\eta \) and \(\mu \) are the zeroth harmonics of the expansions of the functions \(\rho_{\rho_p} \) and \(F_{\rho_p} \) in Legendre polynomials.

Substitution of (50) in (46) leads to the following expression for the instability parameter \(\xi \) in the nonrelativistic limit:

\[
1 + \frac{\eta \mu}{\xi} = \frac{\xi}{\eta \mu}
\]

(51)

(We note that the inequality \(1 + \eta \mu > 0 \) is the condition for the stability of the nucleon liquid relative to perturbations of the Fermi surface in the absence of the pion field.) The constant \(\eta \) in vacuum is known from experiments on the scattering of nonrelativistic nucleons, \(\eta < 1 \).\[10\] For nuclear matter, the value \(\eta = 1.6 \) can be determined from the experimental data on the magnetic moments of spherical nuclei.\[11\] The Fermi velocity \(v_F \) at which \(\xi \) reverses sign, is \(v_F = 0.28 \) at \(\eta = 1.6 \) and \(g^2/4\pi = 14.6 \), and is very close to the Fermi velocity of the nucleons at normal nuclear density.

We are grateful to A. I. Akhiezer, A. B. Migdal, D. N. Koshresenkov, I. I. Zalishchuk, D. A. Kirzhnits, Yu. P. Stepanovskii, V. A. Fateev, and A. I. Chernoutsan for interest in the work and useful discussions.

1\) No simplify the notation, we omit hereafter the isotopic indices.

8\) A. Adler and R. F. Dashen, Current Algebra and Applications to Particle Physics, Benjamin, New York, 1967.

10\) M. Chudnovskii and L. V. Krive, Preprint ITP-76-111, Novosibirsk, October 1976.

Translated by J. G. Adashko

I. V. Krive and E. M. Chudnovskii