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Self-action of a transverse electromagnetic wave on the appearance of parametric insta­
bility in a plasma is considered. The variation of the wave field structure in the region of 
its reflecticm is investigated. It is shown that in the initial period of development of the 
instability, self-action results in deep amplitude and phase modulation of the reflected 
wave. 

1. INTRODUCTION 

The interaction of transverse electromagnetic waves 
with the natural oscillations of a plasma increases 
sharply in resonant regions, where the wave frequency 
is close to one of the natural frequencies of the plasma. 
In particular, at plasma resonance (w - wo), the real 
part of the dielectric constant tends to zero: 

eo=1-O)o'/O)'~O, O)o'=4ne'Nlm. (1) 

In this case, parametric excitation of Langmuir waves 
and of the ion-acoustic oscillations in the field E of the 
transverse wave is possible. The threshold amplitude 
Ethr of the field, at which parametric excitation sets in, 
decreases resonantly under conditions (1)[1 ,2J. It is im­
portant that in a weakly inhomogeneous plasma the con­
dition Eo - 0 also determines the point of reflection of 
the transverse wave zo.l) In the vicinity of the reflec­
tion point, the intensity of the wave field increases in 
proportion to E~II2. Thus, as double resonance takes 
place Eo - 0: the threshold field Ethr decreases, and 
the amplitude of the radio-wave field increases simul­
taneously. It should therefore be particularly easy to 
excite parametric instability in this case, as is indeed 
observed in experiment [3, 4J. 

When the instability is excited, the conditions under 
which the perturbation-inducing radio wave propagates 
in the plasma are altered. This induces self -action in it. 
It is important that in the vicinity of the reflection point, 
the self-action effects are also resonantly amplified. 
Indeed, in the region where Eo tends to zero, even small 
changes of the plasma lead to an appreciable change in 
the value of E, and consequently also to a change in the 
structure of the field of the radio wave. ThiS, in turn, 
strongly affects the development of the instability. 

I 

The perturbation E in the field of the wave is connec-
ted firstly with the overall variation of the plasma con­
centration due to its being pushed out of the region heated 
by the wave, or to distortion of the ionization-recombina­
tion balance. These processes also take place in the ab­
sence of the instability. They lead to a shift of the radio­
wave reflection pointr 5J, to the appearance of moving 
inhomogeneities in the reflection region, and to a buildup 
of slow relaxation oscillations of the plasma[6J • It is 
important, however, that the processes connected with 
the change of the average plasma concentration are 
usually characterized by considerable times TN on the 
order of the lifetime of the electron or the time of the 
plasma diffusion in the dimensions of the entire per­
turbed region. 

Another type of perturbation E is connected directly 
with the excitation of the plasma oscillations. It is usu­
ally characterized by the "fast" time T ~ 1/y (where y 
is the increment of the instability) and plays a decisive 
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role during the initial stages of the instability develop­
mene), as a result of which it can be considered separ­
ately, regardless of the perturbations of the average 
concentration. The present paper is devoted to an in­
vestigation of "fast" self-action effects in parametric 
buildup of oscillations in the region of radio-wave re­
flection. 

2. STRUCTURE OF WAVE FIELD IN THE 
REFLECTION REGION 

The field of an ordinary radio wave incident normally 
on an inhomogeneous plane plasma layer is described by 
the wave equation [7J 

EIIH. (2) 

where Eo is the dielectric constant of the plasma unper­
turbed by the wave (its imaginary part is neglected), and 
O! is the angle between the external magnetic field Hand 
the wave propagation direction. In the vicinity of the re­
flection point Zo it can b~ assumed that Eo varies as a 
function of z linearly: 

( 1 dN) 
eo(z)=I-I(z-zo), 1-1=--

N dz '. 

Here N(z) is the plasma concentration. Introducing the 
dimensionless coordinate 

( c' ) -';' 
1;= -sin'a (z-zo), 

0)'1-1 

we rewrite (2) in the form 

d'E [ ( 0) ) '(, ] -+ 1;+ --.- L'l.e E=O. 
d1;' cl-lsma 

(3) 

Further, A E( L t) is the perturbation of the dielectric 
constant in the plasma, which occurs when parametric 
instability is excited3). It is important here that the 
unstable region is a system of narrow layers, the char­
acteristic width of which is less than the wavelength in 
the plasma[8J • The reason for this is that the field of 
the standing wave in the viCinity of the reflection point 
forms a system of sharp maxima, near which the os­
cillations are excited. The noted singularity makes it 
possible to integrate Eq. (2) but without specifying more 
concretely the form of the function A E (L t). 

It is important that at not too large amplitudes of the 
incident wave, the oscillations that increase most in­
tensely are those at the maximum that is closest to the 
reflection point, namely the principal maximum located 
at the point ~ = ~ 1 = 1.019. We therefore consider first 
the case when only excitation in the principal maximum 
is important, i.e., AE differs from zero only in one 
narrow layer near ~ l' Then 

(4) 
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where we have introduced the notation 

, S !Jl Ill." L1e ds =1 = II + iI" Illm = --. -. 
ell Slnm a 

(5) 

Substituting (4) in (3) and integrating it in the vicinity of 
b, we find that the derivative dE/d~ experiences a dis­
continuity at the point ~ 1 : 

(dE) (dE) - - - =-IE(SI)' ds ,,+0 ds ,,-0 

Since the point ~ 1 is located in our case at the first 
maximum, the position of which is not altered by the 
presence of an absorbing layer, we get (dE/dO~I-0 = O. 
Consequently, 

1 (dE) 
E(sl) df ',+0 = -I. (6) 

The solution of (3) in the region ~ > ~ 1 is given by 

(7) 

where y 1( 0 and Y2( 0 are the solutions of the unperturbed 
equation (3) with ~E = 0, satisfying the relations 

YI(S-+-oo) =0, 

YI (s ~ 1) ~ (in sin a) -12 cos ('I'S'I, _ <p), (8) 
Y' (S » 1) ~ Onsin a) -I exp {i ('I,s'l, - <p)}. 

Here n = 971~113 ff/sin20' is the refractive index of the 
ordinary wave. The function Yl( 0 is a standing wave, 
i.e., a superposition of incident and reflected radio 
waves of equal intensity. Its normalization corresponds 
to a wave of unit amplitude normally incident from the 
region with n = 1 onto a layer of weakly-inhomogeneous 
plasma. The function Y2( ~) coincides with one of the 
waves making up Yl(O, namely, with the reflected wave. 
Accordingly, the parameters Einc and Eref' which enter 
in (7), denote the amplitudes of the plane waves incident 
on and reflected from the plasma layer. It follows from 
(7) and (6) that 

EineY.' + (Eref-Eine)Yz' 1 =-1 
EineYI +(Eref-Eine)Y, ,~" ' 

where the prime~ denote derivatives with respect to ~. 
From this, recognizing that y~( ~ 1) = 0, we obtain the 
coefficient of reflection D of the radio wave from the 
layer and the amplitude of the field E = E (~ 1) in the 
principal maximum: 

Eref 1 + 1")'1 
D=-=---, 

E ine 1+1")1 
(9) 

E (s.) 1 

EineYI (SI) = 1 + 1")1 ' 
(10) 

where 
. Y' Imy, . YI' 

1") = 1")1 +l1")'=-y ,= Imy , -l 49'l1o' (11) , , , 

In Eq. (11), the argument of all the functions is ~ = ~ l' 
In the derivation of (9)-(11) we used the relations 

YI(S) =2 Rey,(s), 

Y; (£) y,' (;) - Y.' (;) y, (;) = 2i9'l,'I', 

which follow from the asymptotic properties of the func­
tions Yl,2( ~) (see (8)). Separating the real and imaginary 
parts in (9), we obtain the following expressions for the 
amplitude and phase of the reflected wave: 

D = 1 D 1 ei ., 1 D I' = 1 + 41"),1,11 + 1")/1-', 

ImD II + 1")1111' (12) 
tg", = --= - 21"), ----,:--,....,...,.:-::-:--:---:cc-

ReD 1+21").11+1/1'(1")1'-1"),') 

647 Soy. Phys.·JETP, Vol. 37, No.4, October 1973 

With the aid of (10) and (11) we can easily verify that 
the first equation of (12) represents the law of energy 
conservation 

':"'-[IF:inel'-IErefl']= r <Ei>dz=~IEI2 flmL1edz. 
SIT J Sn J 

Let us see how the reflection coefficient ID I varies 
with increasing perturbation I ~ f ~E dz. It is seen from 
(12) that IDI first decreases (inasmuch as "1/2 < 0) and 
reaches a minimum at -~"l/2 ~ 1. Subsequently, the in­
tensity of the reflected wave increases and at 11"1/ 1 »1 
it again approaches the intensity of the incident wave. 
Simultaneously, the amplitude of the field in the prinCi­
pal maximum E( ~ 1) tends to zero (see (10)). Thus, in the 
case 111] 1 »1, the incident wave is reflected from a thin 
layer with ~E -J 0, located at the prinCipal maximum of 
the unperturbed wave E(O = EincY1(O, i.e., at ~ = b. 
The wave reflected from the layer ~ 1 forms a new first 
maximum. In the vicinity of this maximum there also 
appears a narrow layer of unperturbed plasma, and the 
entire process can repeat. Calculation of the behavior 
of the amplitude and of the phase of the wave in the n-th 
reflection is carried out with the aid of the same expres­
sions (11) and (12), in which ~ 1 must be replaced by the 
coordinate ~n of the n-th layer, and by way of Yl( ~) it is 
necessary to take the amplitude of the standing wave 
produced after the (n - 1)-st reflection y~n) (~). It is 
easy to verify that in the geometrical-optics approxima­
tion (~n » 1) we have 

(13) 

To calculate the coefficient "1/ in the principal maxi­
mum ~ = ~ 1> it is necessary to use the explicit form of 
the functions y 1( ~) and Y2 ( ~). We have 

YI (s) = 29'l;I'<D (- s), 

) 971'I.l'nr{ (2 'I) (2 'I,)] y,(s = '3" S 1'1, 3 S ' +'-'/, 3£' (14) 

+dil [/.;,( +s'I')-I_" (~ S'I,)]} , 

where «1>(-0 is the Airy function and Jq / 3 (%C12) are 
Bessel functions. Then 

1 I ('I S'I,) 
=-<D'(-")[Y3+i]+ ,/" I =-[016+i.09] 1") "I ¥;I 1'1,('/,£/') . ., 

SI = 1.019. 

(15) 

Comparison of expressions (13) and (15) shows that 
geometrical optics gives a good approximation even for 
the prinCipal maximum (~ = b). We note that the in­
equality 11] 11 « 11] 21 is always satisfied. Making use of 
this fact, we can easily see from the last equation of (12) 
that as a result of each reflection the phase of the wave 
IJ! changes approximately by ± 11 (depending on the sign 
of the numerator at the instant when the denominator 
vanishes). 

We have considered above the successive excitation 
of a plasma in the vicinity of the first maximum of the 
field of an incident transverse wave. In a number of 
cases, simultaneous excitation of a large number of 
maxima produced by the standing wave, E( ~) = EincY 1( ~), 
becomes significant4 ). In this case, using the geometri­
cal-optics approximation, we can easily show that 

'I. 2Eine 1 { (2, n) . (2, n)} E(;) = Ill, ----- cos -S/,_- -~(/sin _;1,_- , 
1 - i~(n' S'I' 3 4 3 4 

(16) 
Sf ~ S ~ SHI, j = 1, 2, ... , n; D = (1 + iLln') I (1- i~(n'), 
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where 

Here r(k) is an integral of the type (5) calculated in a 
smal~ vicinity (t.~)k of t~? k-th maximum ~ k of the Airy 
functIOn. The only condItIon for the applicability of (16) 

is the inequality (t.0k l r(k) I « 1. 

3. PERTURBATION OF THE DIELECTRIC 
CONSTANT 

We determine now the form of the perturbation of the 
dielectric constant t.€ in (5) and (12). We consider the 
case of not too strong a wave 

IEine I' 1/ 2 1 75 r1", ",,'10 • UT' NT --< v-. - on1 Slna- i. 

8n 3 111,1 Un 
(17) 

Here vTe, i = ../Te , i!me, i is the thermal velocity of the 
electrons (ions), and it is assumed that the ion tempera­
ture Ti is close to the electron temperature (Te/Ti ~ 1). 
Under similar conditions there are excited in the plasma 
Langmuir oscillations whose wavelength .\ = 21T /k is 
much larger than the Debye radius of the electrons De 
= ../Te!41Te2N (condition for the smallness of the Landau 
damping)[8J . The increment Y of the excited instability 
is much less than the beat frequency n ~ kvTi between 
the incident pump wave and the Langmuir oscillations of 
the plasma. This makes it possible, in the calculation of 
the intensity of the oscillations, to use the formulas of 
the weak coupling between the waves: 

(0) (0) + a, 6 I') '-1)_ 4n[6 I') +6 I"~l 
E cp. 2 E, cp. --;;; Pnl Psp, 

~< (0) (0) + ["_" +~< (0)] '-I)~ 4n[< ,-I) + < '-I»). 2 vE,· cp. E 4 vE,. cp. k' vp nl vPsp , (18) 

e(kE) 
a{,=~, 

'. OE,-I) 0 
8,-1) ~ £'-11 + i --- Q > 0, 

oQ ot' 

where E is the amplitude of the transverse wave 
[E* exp(iwt)!.2i + c.co], <.p(0) and. <.pk'1) are the harmonics 
of the potential <.pk' corre~pondlng to the frequencies 
nand n - w. The longitudinal dielectric constant £(0),(-1) 
is equal in this case to 

2 [ iv, ] E'-"~e(Q-w,k)~--;;;;; 6-Q-z ' 6~w-w,; 

E (0) ~ E (Q, k) ~ 1 + 6E,") + 6E~'), 68;') ~ (kD,) -', 

" 
bE,'''~ (kD,)-'il, il ~ ill + ii1, ~ 1 + iX[ Y; + 2i S e"dt], 

, 
x ~ Q ! l'2kuT;' 

Here wk. = wo[ 1 + (3/2)( kDe)2] is the frequency of the 
LangmuIr wave and lie is the frequency of the collisions 
of the electrons with the ions and the neutral particles. 
In the right-hand side of (18) are included the nonlinear 
charge density oPnl' due to the interaction of the har­
monics of the Langmuir oscillations, and the spontaneous 
term oP sp ' 

The solutions of the dispersion equation correspond­
ing to the system (18) yields the frequency and incre­
ment of the excited oscillations: 

v, wo la,I' lIe;0168.") 
Q+i1~II-i2+2 4 8") , 

IEI'cos'(j 
la,.I'~ '(kD,.)', 

4nNT,. 

where eo is the angle between the vector k of the 
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Langmuir wave and the electric field E of the trans­
verse pump wave. Carrying out the usual averaging of 
(18), we obtain an equation for the spectral density of 
the energy of the Langmuir oscillations Wk 
= (k2/21T)(I<.p(-1)1 2 )k: . 

d;k +[v, - 21nl + 2~1nl )w. ~(2n)-' [T,v, + ~' Ti · 21nl ]. (19) 

The nonlinear increment Ynl in this equation describes 
the growth of the oscillations in the field E of the trans­
verse wave, and is equal to 

2 _ IEI'cos'S, w, (20) 
1nl - 8nNT, 2F(x)' 

The correction t. Ynl to the nonlinear increment, brought 
about by the induced scattering of the Langmuir waves 
by the ions, is given by 

2~ - S (kk,)' 1 W.,d'k, 
1nl -w, 11kT2F(~x)~' 

~X~ 

Formula (19) should be supplemented by an equation 
expressing the perturbation of the dielectric constant in 
terms of the spectral density of the noise W k: 

S d'kW cos'S 
~8~ NT,' 2F(x) [i+L(x)). 

We have used here the notation 
(0) (0) 

118, lie, !.:..(kD.)-' i+L(x) 
e'O) T,' F(x)' 

_ , T ,-' 1!F(x)~ Ynxe-"' 1 + T: il(X) , 
L(x)~ u,(x)+lil(x) I'TJT, 

il,(X) 

.~ ~ Q! y2kvT ;, Q ~ w - w,[ 1 + '/,(kD,.)'). 

(21) 

It is easy to see that the system of equations (19)-(21) 
satisfies the energy conservation law -' 

(Ei>~ ~IEI' 1m ~8 ~ S [v, + 21(k) )W.d'k. 
8n 

In a one-temperature plasma with Te ~ Ti' the mini­
mum value of the function F(x) (corresponding to the 
maximum increment) turns out to be almost constant: 
min F(x) = F(X1) = 1.75; the parameter Xl ~ 1, IL(X1)1 
< 0.1 (thus, at Te = Ti we have Xl = 1.24, L(X1) 
= 0.09) [8J . 

The equation for the waves (19) was used by other 
authors [9, 10J to calculate the level of the steady-state 
noise in parametric excitation of plasma. We note that 
in [9, 10J they used an approximate equation for the non­
linear increment Ynl' When averaging the equations in 
(18), it must be borne in mind that the nonlinear charge 
denSity oPnl is due to the interaction of the harmonics 
<.pit (and therefore the correction t. Y nl to the increment 
has the same form as in the absence of a pump field), 
whereas the spontaneous source in (19), to the contrary, 
is generated mainly by the low-frequency component 
oP~~ of the spontaneous charge density. The condition 
for the existence of the considered kinetic instability 
lie /2 < Ynl < ../2"kvTi ~ n leads to a limitation on the 
intensity of the pump wave (17): 

EI~.<IEI'<EI~" 

E;hr ~ 16nF(xl)~NT" 
w, (22) 

E1:"1 ~32l'2nF(x,)~(knD,)NT;. 
UTe 
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The threshold value of the wave number kn' which enters 
in (22), corresponds simultaneously to the maximum of 
the nonlinear increment. It is obtained from the equa­
tion 

Q(k n } 

-=--;-=x" F(x,}=minF(x}, Q=W-Wk. (23) 
f:l knUT' 

The solution of (23) in the widely encountered case 

or, equivalently 

is given by 
2 W-Wo 

(knD'}'=-3 --. 
Wo 

4. SELF-MODULATION OF THE WAVE 

(24) 

(25) 

Equations (10), (12), (19)-(21), and (5) form a com­
plete system that makes it possible to calculate the be­
havior of the amplitude of the wave reflected from the 
plasma layer with allowance for the self-action. They 
have a simple analytic solution in the case when the 
time to, during which the developed oscillations do not 
exert a noticeable influence on the initial amplitude of 
the incident pump wave, E(~) = EincY1(~)' greatlyex­
ceeds 1/yo, where yo is the maximum instability incre­
ment (see (20) and (23))6) 

IEincY, (~,) I' W 

8nNT, 2F(x,) 
(26) 

We have taken into account here the fact that the in­
stability develops most strongly at the principal maxi­
mum ~ = ~ 1 of the function y 1( ~), the function propor­
tional to the Airy function (see (14)). Under the condi­
tions (26), the spectral noise density Wk has a sharp 
maximum not only in coordinate space, but also in 
wave-number space. We assume furthermore that the 
amplitude EincY 1( ~ 1) greatly exceeds the threshold value 
(22) (i.e., 2yo » ve ), and consider the initial stage of 
the process, where the nonlinear interaction of the 
Langmuir waves in Eq. (19) is negligible (I~ynll « Ynl)' 
Then, using the dimensionless variables 

" E(£",;} '" ,;=2Yot, a(,;}= E- (£) , 
Inc Yt t 

we can easily find from (5) and (19)-(21) that in the case 
IT - Tol «To and velT - Tol 12yo« 1 the integral I in (5) 
is equal to 

in the vicinity of its maximum (the spectral noise den­
sity Wk( 0 is proportional to an exponential of this func­
tion). The parameter f3 » 1 is defined in accordance 
with (24). The effective dimension of the region ~~, in 
which M: f. 0, turns out to be equal to ~~ = lrr/d2TO' 

Equation (28) at fixed 10 determines the dimensionless 
time To = 2yoto during which the Langmuir oscillations 
exert no influence on the amplitude (and phase) of the 
pump wave. It follows from (10) that 10 « 1. Combining 
(10) and (27) we can easily obtain an equation that ex­
presses the dimensionless time T in terms of the dimen­
sionless oscillation energy lz = 1m I: 

In~+ 2(1, -/o} (1],L - 1],)+ ~(I,' -Io') (1 + L') 11]1' =,; - ';0. (29) 
10 2 

We now take into consideration the smallness of the 
parameters ILl < 0.1 and TJJ'12 = 0.18. Then, accurate 
to small terms quadratic in Land TJ 1/TJ2' Eqs. (10), (12), 
and (29) can be rewritten in the form 

a = IE(s,) I EincY' (s,) I' = (1 + J) -', (30a) 
IDI'=1"":4J/(1+J)', (30b) 

tg IJl = 2J(L - [1], / Ih} I (1- I'), (3Oc) 
In (J I [o) + '/2 (2 + J)' - '/2 (2 + [o)' = ,; - ';0, (30d) 

where I = I TJ2111' and the quantity 10 = I TJ2110 « 1 can be 
reduced with the aid of (23) and (24) to the form 

d = fTt'. 
(31) 

We have taken into account here the fact that, in accord­
ance with (25), 

and have omitted the small term (Wk )00 (k )lTl·w. (In n n 
the absence of a pump field w!!, have Wk = T e /(2rr)3.) Ac­
cording to (30b) and (3Oc), at 1= 1 the amplitude of the 
reflected wave vanishes, and tan lji - 00. A more rigor­
ous allowance for the small corrections leads to the 
values 

min IDI' = '/4[L- 1], /1]21', tglJl = -1]2/'1' 

at ; I""n I = 11]1-'. 

The dependence of the reflection coefficient ID\ 
= IEref/Eincl, of the phase lji, of the dimensionless time 
T - To = 2yo(t - to), and of the dimensionless intensity of 
the transverse wave at the point ~ 1 

1= lo[i + L]exp {f a(-r'}d,;'}, 

'. 
a = IE(s,} I EincY,(s,} I' 

(27) on the dimensionless noise energy 

I, /12 = L(x,} "" L, 

where 

10 = 9'l?' (knD,) , ~[_W_+(2n}'( Wk.) ] 
ND,' ~ Q(kn } T, 0 

exp{- v,';0/2yo} (8 )_' [2F(X,} ]'" I' x n -,-, - eTo To • 
F(x,}d F (x,) • 

(28) 

Here 9'l1 is defined in (5), and (Wk )0 is the initial value 
of the spectral denSity. The paraA\eters F"(X1) 
= d2F(x)/dx2 Ix =x1 and d = ..;r;, which enter in (28), are 
the result of the expansion of the function 

y,'(£} '8 - y,'(£,} [1 d'(6 s }'] 
F(x} cos oTo - F(xI) - - t 

[ F" (x,) (k - k" ) '] 
i- 1- 80 ' - 2F(x,} ~'-k-n- ';0 
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[- 11],1 9'l 'I. S W k d'k W 
- 2F(x,} , ~7dz 

is shown in the figure (for 10 = 0.1, L = 0, and TJ1/TJ2 
= 0.18). The noise energy I at t < to, i.e., T < To, in­
creases exponentially with time, and at T > To, as seen 
from the figure, its growth becomes much weaker due to 
the self-action of the transverse wave, I ~ ";t - to. The 
amplitude of the reflected wave first decreases and then, 
at t - to > 1/yo, increases somewhat more slowly; the 
variation of its phase is analogous. At 

[""y2(,;-,;0) >1 

there is a strong reflection of the incident wave from 
the thin perturbed layer located at ~ = ~ 1.1 i.e., a new 
standing wave is produced. As already indicated in Sec. 
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2, a new perturbed layer is produced at its first maxi­
mum, after a time ~to, and leads to analogous changes 
of the amplitude and of the phase of the wave, etc. Thus, 
the reflected wave is amplitude- and phase-modulated, 
with a period on the order of to = T 0/ 2 Yo. 

We have neglected above the nonlinear interaction of 
the Langmuir waves. Using relations (19) and (22) we 
can show that they become significant if Ibecomes lar­
ger than or approximately equal to the quantity 1m, de­
fined by the relation 

~Im(1+Im+~Im')=' EincYt(\;t) ,'<1, (32) 
xa 3 Etlu: t 

where, with logarithmic accuracy, 

x=~l/ n ()='ro+~ln9l!t. 
~ V 'rod" '. 3 

We consider therefore another limiting case, when the 
nonlinear interaction of the L;mgmuir waves becomes 
decisive, and 1m > 1. In this <!ase, the noise density is 
redistributed energywise over the spectrum, owing to 
the interaction between the waves. In the steady state, 
according to [9'"11J, the dimensionless oscillation energy 
in the eX,£itation region (x = nN2kvTi ~ 1, ~ r:::; ~ 1) is 
equal to Isat' where 

I,at."'" 41T1,16t ., E(6t) " (33) 
~ E thrt 

Thus, as a result of the nonlinear interaction of the 
Langmuir waves, the parameter I in expressions (30a) 
and (3Ocj decreases from the value 1m defined by (32) to 
a value Isat «1. rv-te note that the process of establish­
ment of the noise density can be accompanied by rapid 
oscillations of the parameter 1, with the characteristic 
time T ~ I;,ath /Tod2;2Yolm.) Consequently, as seen 
from formula (33), the plasma perturbation in the region 
of the principal maximum ceases, after establii;lhment 
of the oscillations, to exert a noticeable influence on the 
propagation of the transverse wave, i.e., E( ~) 
= EincYl(~)' The reflection coefficient increases in this 
case to unity. Subsequently, however, after a time on 
the order of to = To/2yo, a plasma perturbation builds up 
in another narrow layer adjacent to the next, second 
maximum of the Airy function y 1( 0, and then in the third 
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layer, etc. Calculation of the reflection coefficient upon 
excitation of the n-th maximum, located at the point 
~ = ~n' is based on the same formulas (30) and (31), in 
which ~ 1 must be replaced by ~ n and we must put 
7J r:::; -i/v'fn (see (13) and (15)). 

Thus, even when the influence of the nonlinear inter­
action of the Langmuir waves is taken into account, the 
reflected transverse wave turns out to be modulated at 
the initial stage of the perturbation, with a frequency on 
the order of 2yoho. 

The authors are indebted to I. S. Shlyuger, who called 
their attention to the questions considered in this paper. 

l)We are considering here a planar-stratified plasma, which is inhomoge­
neous in the direction of the radio-wave propagation, It is assumed 
that the characteristic dimension of the inhomogeneity is much larger 
than the wavelength. Such conditions are realized, for example, in the 
ionosphere. 

2)For example, in the upper ionosphere T - 10-2 - 10-4 sec, whereas 
TN - 102 - 103 sec. 

3)It is assumed in (2) that the temporal variation of d€ are quasistation­
ary, i.e., the change of d€ during the time of wave propagation in the 
perturbed zone is small. 

4)Excitation of a large number of maxima occurs at a sufficiently high 
intensity of the incident wave, and also upon saturation of the turbu­
lence (see below). 

5)Equation (19) was derived for an isotropic plasma. However, since the 
maximum of ')'nl corresponds to cos2 00 = I, i.e., k " E " H, the influ­
ence of the external magnetic field H can indeed be neglected. 

6)For example, under the conditions of the ionosphere, the parameter 
2')'oto has an approximate value 15-20. 
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