indices make a small contribution relative to the parameter c^2. Indeed, multiplication of n expressions $v + xE_i + yE'_i$ with identical indices i yields expressions of the same type, but with coefficients of the order of c^{2n}.

Taking into account the identity
\[\sum_{i=1}^n \frac{1}{c^2} \prod_{i=1}^n z_i = \exp \left\{ \sum_{i=1}^n z_i \right\}. \]
the left side of which contains also terms with identical indices, we obtain from (19)
\[Z = \sum_{(o)} A \exp \left\{ \sum_{i} (KE_i + v + xE_i + yE'_i) \right\} = \sum_{(o)} A \exp \left\{ \sum_{i} (K + x)E_i + \sum_{i} yE'_i \right\}. \] (20)

As seen from (20), in the principal approximation in c^2 the model under consideration is isomorphic to the Ising model with interaction along the diagonals. As we have seen above, two cases are possible in this Ising model: the isomorphism is either violated in the next-higher approximations, or is conserved in the next higher approximation and an assumption made Fisher\(^7\) and also by Anisimov, Voronel', and Gorodetskii \(^8\) is satisfied, namely that the thermodynamic potential in the variable ϕ of a system with impurities is isomorphic to the corresponding thermodynamic potential of the pure substance.

Since the coefficients x and y in (20) are of the order of c^2, the shift of the critical temperature due to the direct interaction is of the order of c^3.

In conclusion the authors thank A. I. Larkin, Yu. N. Ovchinnikov, V. L. Pokrovskii, A. M. Polyakov, and G. V. Ryazanov for valuable discussions.

\(^1\) L. Onsager, Phys. Rev. 65, 117 (1944).
\(^7\) M. E. Fisher, Rev. Mod. Phys. 36, 257 (1968).

Translated by J. G. Adashko
270

ERRATA

Article by V. A. Belinskii, E. M. Lifshitz, and I. M. Khalatnikov, “The Oscillatory Mode of Approach to a Singularity in Homogeneous Cosmological Models with Rotating Axes” (33, 1061 (1971)).

In formula (A.7) for P^3_d the last term in square brackets should be $2\mu \nu g_{12} g_{23}$.

Article by V. S. Popov, “On the Properties of the Discrete Spectrum for Z Close to 137” (33, 665 (1971)).

1. The left side of formula 6 should read
\[z_{W_{i}, a(x)} / W_{i, a(x)} \]
2. Formula (27') should read
\[\epsilon_{i}(x) = \begin{cases} z_{W_{i}, a(x)} [1 + \frac{1}{2} c g_{i} b] & \text{for } 0 < xL < \pi \\ c g_{i} bL & \text{for } \pi < xL < 2\pi \end{cases} \]

The system of equations (10) should read
\[\begin{align*}
\frac{\partial}{\partial t} & \approx \frac{W_{i}^0 (y^{' - 1})^2}{\bar{\epsilon}_{W_{i}^0}^0 (y^{' - 1})^2} \ln [\bar{\epsilon}_{W_{i}^0}^0 (y^{' - 1})^2 W_{i}^0] \\
(\bar{y} - 1)^{-1} & \approx 3 + \frac{Q(\bar{x})}{2 + \bar{x} (\bar{y} - 1)^2 W_{i}^0}
\end{align*} \] (10)

Article by Yu. N. Demkov and V. V. Ostrovskii, “n + 1 Filling Rule in the Periodic System and Focusing Potentials” (35, 66 (1972)).

On p. 67, Col. 1, line 2, in the phrase “the larger n at fixed N, the deeper the given level” n should be replaced by L. Correct formulation is implied in the remainder of the text. In the caption of Fig. 3 omit the last words “at the same instant of time.” There are also slight errors in Fig. 1 for $Z = 41, 43-45, 55-56$, and 63-65. In the right hand side of the formula for $f^2(x)$ (Appendix), the denominator should contain the factor $(\bar{y}^2) (4\bar{y} + 1)$ in place of $4(\bar{y}^2 + 1)$.