THE HIGH-FREQUENCY ANTIFERROMAGNETIC RESONANCE BRANCH IN CsMnF₃

A. S. BOROVIK-ROMANOV, B. Ya. KOTYUZHANSKIĬ, and L. A. PROZOROVA

Institute for Physics Problems, U.S.S.R. Academy of Sciences
Submitted December 30, 1969

A high-frequency AFMR branch is found in the hexagonal antiferromagnet CsMnF₃ and the size of the gap for this branch is determined. At high temperatures the temperature dependence of the gap is described by the Brillouin function. The temperature dependence of the AFMR line width is also investigated. The AFMR spectrum for CsMnF₃ is calculated on the basis of an expression for the thermodynamic potential satisfying the crystal symmetry.

LEE, Portis, and Wittl have studied the magnetic properties of CsMnF₃ and have found that below Tₐ = 53.6°C this substance is an antiferromagnet with anisotropy of the "easy plane" type. They observed antiferromagnetic resonance (AFMR) at ν = 9.4 GHz, representing the low-frequency branch of the AFMR spectrum. Several workers have carefully investigated the hyperfine interaction in CsMnF₃ and have performed experiments on nuclear and nuclear-antiferromagnetic double resonance.

We know that in antiferromagnets of the "easy plane" type the exchange branches (ν ≈ H₀) should be accompanied by both a low-frequency (ν ≈ 2H₀) branch. The high-frequency AFMR branch has previously been observed only in α-Fe₂O₃ and MnCO₃, which contain s-state magnetic ions. Here the spin-orbit interaction is small and the anisotropy energy is determined mainly by the dipolar interaction. Since CsMnF₃ also possesses s-state magnetic ions, we can expect that its anisotropy energy will also be so small that its high-frequency resonance branch will be found in the 100–200-GHz region. The present work was undertaken to detect and investigate the high-frequency AFMR branch in CsMnF₃.

CALCULATION OF THE AFMR SPECTRUM

CsMnF₃ is a hexagonal crystal with symmetry that is described by the D₁₉h space group. Its unit cell (Fig. 1) contains six Mn⁺⁺ ions occupying the following crystallographic sites: Mn I—(0, 0, 0) and (0, 0, ½); Mn II—(½, ½, 0), (½, ½, ½ + u), (½, ½, ½ + u), and (½, ½, -u).

We first determine the possible magnetic structures in CsMnF₃, following Dzyaloshinskii. We denote the magnetic moments of Mn I ions by s₁ and s₂, respectively, and the magnetic moments of Mn II ions by s₃, s₄, and s₅; we introduce the following combinations:

\[l₁ = s₁ - s₂, \quad m₁ = s₁ + s₂, \]
\[l₂ = -s₁ + s₂ - s₃ - s₄, \quad l₃ = -s₁ - s₂ + s₃ + s₄, \]
\[l₄ = -s₁ + s₂ + s₃ - s₄, \quad m₂ = s₁ + s₂ - s₃ + s₄. \]

The components of the vectors \(lₐ \) and \(mₐ \) are the bases of reducible representations of the D₁₉h group, which is here derived from the D₁₉h group by assuming that all translations are identical elements. By comparing the characters of these representations with those of the D₁₉h point group, we obtained the accompanying table, which gives the representations of the transformations for each of the \(lₐ \) and \(mₐ \) components (using the notation of [17]).

Following the thermodynamic theory of second-order phase transitions, we can now write a general expression for the thermodynamic potential \(Φ \) based on the crystal symmetry but limited to second-order terms. It must be remembered that second-order invariants can be composed only of quantities transforming according to a single representation. We have

\[
Φ = \frac{1}{2} l₁ l₁ + \frac{1}{2} l₂ l₂ + \frac{1}{2} l₃ l₃ + l₄ l₄ + \frac{1}{2} m₁ m₁ + \frac{1}{2} m₂ m₂ + \frac{1}{2} m₃ m₃ + \frac{1}{2} s₁ s₁ + \frac{1}{2} s₂ s₂ + \frac{1}{2} s₃ s₃ + \frac{1}{2} s₄ s₄ + \frac{1}{2} s₅ s₅
\]

The magnetic structures that can be formed in a crystal as a result of a second-order phase transition from the paramagnetic state are determined by the irreducible representations of the crystallographic class. We introduce the following notation for the different types of magnetic moment ordering in CsMnF₃: \(F₁ \)—ferromagnetic ordering of the Mn I magnetic moments; \(F₂ \)—the same for Mn II; \(A₁ \)—antiferromagnetic ordering of the Mn I magnetic moments; \(A₂ \) the same for Mn II with spin alternation corresponding to \(lₐ ≠ 0 \). The indices \(\parallel \) and \(\perp \) indicate the spin directions relative to the z axis. Any magnetic structure can be represented as a combination of the F's and A's. The last column of the table gives the magnetic structures that can exist in crystals with D₁₉h symmetry. The table shows that
weak ferromagnetism is theoretically impossible in CsMnF₃. Also, the MnI and Mn II magnetic moments can be ordered simultaneously only when the directional alternation of the Mn II magnetic moments corresponds to \(I_z \neq 0 \).

The available experimental data\(^{(1)}\) provide a basis for the hypothesis that below \(T_N = 53.6\, \text{K} \) the magnetic moments of both Mn groups are ordered. Otherwise the disordered system would be responsible for a steep rise of the susceptibility with decreasing temperature; this effect is not observed experimentally. We can therefore assume that magnetic structure of the A₁ and A₂ type is realized in CsMnF₃. The identical susceptibilities along and perpendicular to the z axis, together with the observation of the low-frequency AFMR branch, indicate that the spins lie in the basal plane of the crystal. Therefore we shall assume henceforth that \(I_z = I_x = I_y = 0 \). It is indicated by data in\(^{(2)}\) that in good CsMnF₃ single crystals in-plane anisotropy does not exist, and that the vectors \(I_1 \) and \(I_2 \) are perpendicular to the applied field \(H \). We shall assume that the magnetic field is applied along the x and z axes, that is, \(I_1 = 2I_2 = 4I_3 \) in accordance with the number of magnetic ions in the sublattices (the magnetization of each sublattice is denoted by \(M_0 \)).

Writing the Landau-Lifshitz equations for each sublattice, we arrive at the following equations of motion for the magnetic moments:

\[
\frac{1}{\gamma} \frac{d}{dt} \begin{bmatrix} \vec{m}_1 \\ \vec{m}_2 \end{bmatrix} = \begin{bmatrix} \frac{\partial \Phi}{\partial \vec{m}_1} \\ \frac{\partial \Phi}{\partial \vec{m}_2} \end{bmatrix} + \begin{bmatrix} \vec{m}_1 \cdot \frac{\partial \Phi}{\partial \vec{m}_1} \\ \vec{m}_2 \cdot \frac{\partial \Phi}{\partial \vec{m}_2} \end{bmatrix},
\]

or

\[
\frac{d\vec{m}}{dt} = \frac{1}{\gamma} \frac{\partial \Phi}{\partial \vec{m}} - \vec{m} \cdot \frac{\partial \Phi}{\partial \vec{m}}, \tag{3}\]

The Landau-Lifshitz equations presuppose that the magnetic moments of the sublattices have constant modulus:

\[
\|\vec{m}_1\|^2 + \|\vec{m}_2\|^2 = \text{const}, \tag{4}\]

so that the thermodynamic potential \((2) \) can be written as

\[
\Phi = \frac{1}{2} \|\vec{m}_1\| + \frac{1}{2} \|\vec{m}_2\| + C(\vec{m}_1 + \vec{m}_2) + D\|\vec{m}_1\|^2 + D\|\vec{m}_2\|^2 + \frac{1}{2} (B_1 + B_2) \vec{m}_1 \cdot \vec{m}_2 + \frac{1}{2} (B_1 + B_2) \vec{m}_2 \cdot \vec{m}_1 - \vec{m}_1 \cdot H - \vec{m}_2 \cdot H. \tag{5}\]

Assuming \(\partial \Phi / \partial \vec{m} / \partial t = 0 \) and \(\frac{\partial \Phi}{\partial \vec{m}} \) from (3) and (5) we obtain equations for the dependences of \(m_1 \) and \(m_2 \) on the field applied in a plane perpendicular to z:

\[
m_1 + m_2 = \left(B_1 + B_2 - 2D - \gamma_1 C \right) + b_1 + b_2 - 2D \frac{\Delta^2}{\gamma_1^2} \vec{H}, \tag{6}\]

\[
m_2 + m_1 = \left(B_1 + B_2 - 2D - \gamma_2 C \right) + b_1 + b_2 - 2D \frac{\Delta^2}{\gamma_2^2} \vec{H}. \tag{7}\]

The total magnetization is therefore

\[
m = m_1 + m_2 = \frac{B_1 + B_2 - 2D - \gamma C}{\Delta^2} \vec{H}, \tag{8}\]

When the field is along the z axis we have

\[
m_1 = \left(B_1 + B_2 - 2D - \gamma_1 C \right) + b_1 + b_2 - \frac{\Delta^2}{\gamma_1^2} \vec{H}, \tag{9}\]

\[
m_2 = \left(B_1 + B_2 - 2D - \gamma_2 C \right) + b_1 + b_2 - \frac{\Delta^2}{\gamma_2^2} \vec{H}. \tag{10}\]

where

\[
\Delta^2 = \left[B_1 + B_2 + C^2 - D^2 - \gamma_1^2 C + \gamma_2^2 C \right] + b_1 (B_1 - \gamma_1^2 C + \gamma_2^2 C) + b_2 (B_2 - \gamma_1^2 C + \gamma_2^2 C) - 2D - \delta. \tag{11}\]

It is now convenient to introduce the effective field

\[
H_E = \frac{3M_0 \Delta^2}{B_1 + B_2 - 2D - \gamma C}. \tag{12}\]

Then

\[
m_1 = \frac{3M_0}{H_E} \vec{H}, \quad m_2 = \frac{3M_0}{H_E} \vec{H} (1 + \epsilon), \tag{13}\]

where \(\epsilon \) is of the order of the ratio between relativistic terms and exchange terms, i.e., \(\epsilon \ll 1 \). From (3) we obtain, to terms of the order \(H_{A} / H_{B} \), the following expressions for the AMFR frequencies when \(H \parallel z \):

\[
(\nu_1 / \gamma)^2 = 2H_{A} H_{E} + H_{B}, \tag{14}\]

\[
(\nu_2 / \gamma)^2 = 4C \left[5C + 6D - 2 (B_1 + B_2) M^2 + f_1 (H_{B}) \right], \tag{15}\]

where \(H_{A} = \gamma_1 (a_1 + 4a_2 + 4c) M_{0} \). When \(H \perp z \) the first branch changes greatly and we obtain

\[
(\nu_1 / \gamma)^2 = H_{B}. \tag{16}\]

The magnetic field dependence disappears in the remaining branches.

In\(^{(1)}\) the AFMR spectrum was calculated using the molecular field model and taking only nearest-neighbor interactions into account. This procedure leads to the following relations between the coefficients of the thermodynamic potential:

\[
B_1 = 0, \quad B_2 = \lambda_3 / 4, \quad D = -C = \lambda_1 / 4, \tag{17}\]

where in the expression for the energy \(\lambda_3 \) is the coefficient of the \(\delta \sigma \beta \) terms and \(\lambda_1 \) is the coefficient of the \(\sigma \alpha \beta \) terms. Then (13)–(15) are transformed as follow:

\[
(\nu_1 / \gamma)^2 = \frac{\lambda_1 \lambda_3}{\lambda_1 + \lambda_3} M_{0} H_{A} + H_{B}, \tag{18}\]

\[
(\nu_2 / \gamma)^2 = \frac{\lambda_3 \lambda_1}{\lambda_1 + \lambda_3} M_{0} H_{A} + H_{B}, \tag{19}\]

\[
(\nu_3 / \gamma)^2 = \frac{\lambda_3 \lambda_1}{\lambda_1 + \lambda_3} M_{0} H_{A} + H_{B}. \tag{20}\]

In his final equations Welsh\(^{(1)}\) assumed \(\lambda_1 = \lambda_2 \); then our expressions for the gaps in the spectrum coincide with his results. However a different field dependence is obtained for the second branch (Welsh gives \(\gamma_2^2 \lambda_2^2 \)).

We must also discuss the anisotropy energy further. The expression (2) for the thermodynamic potential contains all the anisotropy energy terms that are permitted by the CsMnF₃ crystal symmetry. Equations (13) and (9) show that the magnitude of the gap for the second
branch of the spectrum depends on a combination of the constants \(a_1, a_2,\) and \(c,\) while the anisotropy of the magnetic susceptibility is determined by a combination of the constants \(b_1, b_2,\) and \(d.\) Terms such as \(s_{1z} s_{2z},\)
\(\sigma x_1 \delta x_3,\) and \(\sigma x_2 \delta x_3\) have been omitted from the expression for the energy in\(^{1,4}\). Therefore the results given there involve only a single anisotropy field in both the susceptibility anisotropy and the expression for the gap.

Since we are primarily interested in the high-frequency AFMR branch we have not considered the influence of the nuclear system on AFMR; this aspect has been studied in detail by Welsh.\(^{14}\)

EXPERIMENTAL PROCEDURE AND SAMPLES

AFMR in CsMnF\(_3\) was investigated with the magnetic spectrometer described in\(^{15}\). The resonance absorption line was recorded through two-coordinate automatic registration of the variation of the microwave signal reflected from the crystal as a function of the magnetic field \(H.\)

The measurements were obtained for the \(2°-65°K\) range. Above \(4.2°K\) we used a vacuum cryostat\(^{10}\) with a carbon adsorption pump. Temperatures were measured with a carbon thermometer calibrated at \(2.1, 4.2, 14.0, 20.39, 27.25, 62.8,\) and \(77.5°K.\) The measurement accuracy and the stability of the temperatures were maintained within \(0.3°K.\)

The CsMnF\(_3\) single crystals were grown in a helium atmosphere by S. V. Petrov, using the Stockbarger method and the apparatus described in\(^{111}\). After the CsMnF\(_3\) single crystals were x-ray oriented they were cut in the form of parallelepipeds. Our basic measurements were performed on a 1.6 \(\times\) 0.8 \(\times\) 0.2-mm sample having large faces that coincided with the basal plane to within \(5°.\) The samples were mounted with BF-6 cement on the copper end cap of the waveguide.

EXPERIMENTAL RESULTS

1. **The High-frequency Resonance Branch at \(T = 4.2°K\)**

With the basal plane of the sample perpendicular to the magnetic field, we observed an absorption line corresponding to the high-frequency branch of the AFMR spectrum. At \(T = 4.2°K\) we carefully investigated the dependence of the high-frequency branch on the magnetic field. Figure 2 shows that our results agree well with \(13\) when we insert the values

\[H_{AE} = 41.1 \pm 0.6\ kOe,\quad \gamma = 2.8\ kOe/GHz (g = 2.0).\]

Our value of \(\gamma\) agrees with\(^{14,4}\) and is the result usually obtained for compounds with Mn\(^{++}\) ions. No other spectral branches were observed up to \(\sim 190\ GHz.\)

2. **Temperature Dependence of the Gap in the High-Frequency AFMR Branch**

The temperature dependence of the resonance field was studied at several fixed frequencies. With increasing temperature the absorption line shifted towards higher magnetic fields. The paramagnetic transition temperature \(T_N\) was defined as the point at which the resonance field ceased to vary with heating of the sample. Our measurements yielded \(T_N = 53.6 \pm 0.3°K,\) in agreement with\(^{14}\).

It should be noted that in our experiments the transition point was determined at \(\sim 40\ kOe\) and can therefore, as shown in\(^{12}\), differ from \(T_N\) in zero field by the amount

\[\Delta T = T_N - \Delta_{TL} \left(\frac{H}{H_T}\right)^\delta.\]

A calculation shows that in the case of CsMnF\(_3\) this shift of \(T_N\) does not exceed \(0.2°K\) and is thus smaller than our experimental error.

Assuming that the field dependence of the resonance frequency \(13\) holds true for all temperatures, we calculated \(H_{AE}(T)\) from the experimental data. The value of \(H_{AE}\) extrapolated to \(0°K\) was \(41.1 \pm 0.6\ kOe,\) which corresponds to the frequency \(\nu_0 = 115 \pm 2\ GHz.\) Figure 3 shows the temperature dependence of the squared relative value of the gap. The experimental spread of \(H_{AE}\) was determined by the resonance line width (\(\sim 0.1\Delta H\)) and by the inaccuracies of the temperature measurements.

3. **Temperature Dependence of the Line Width**

Since the field dependence of the AFMR frequency is nonlinear, the experimental values of the half-width \(\Delta H\) were converted to equivalent line widths by means of the expression

\[\Delta_{\nu} = \frac{\nu_0}{\nu_1} \Delta H.\]

Figure 4 shows the temperature dependence of \(\Delta\nu.\) We observe that \(\Delta\nu\) increases rapidly as the transition temperature is approached, but then dips sharply at a temperature \(2°\) below \(T_N,\) after which it remains constant.

The result \(\Delta\nu_1 \approx 0.8\ GHz\) obtained for the high-frequency branch at helium temperatures is close to the value of \(\Delta\nu_1\) \((\approx 0.3\ GHz)\) that was obtained for the low-frequency branch in the same crystal measured at 94 GHz.

![FIG. 2. Dependence of the resonance frequency of the high-frequency branch on the applied magnetic field.](image-url)

![FIG. 3. Temperature dependence of the square of the relative gap magnitude and a comparison with the square of the reduced Brillouin function B_{1/2}^2 (T/T_N) (continuous line).](image-url)
DISCUSSION OF RESULTS

Utilizing the statistical measurements in\(^{(1)}\) together with our value for \(H_{AE}\) at \(T = 0\, ^\circ K\), we calculated the anisotropy field with the aid of (13) and (11):

\[
H_A = H_{AE}^2 / 2H_E = 2.46 \pm 0.07 \text{kOe}.
\]

A value of the anisotropy field was derived in\(^{(1)}\); where \(H_A\) was determined experimentally from the magnetic susceptibility anisotropy measured parallel and perpendicular to the \(z\) axis. However, as already mentioned, this anisotropy field does not appear in the equation for the gap in AFMR. There is therefore no basis for comparing these values. The single-ion anisotropy field \(H_{A,\text{ cryst.}}\) and the contribution to the anisotropy field from the dipolar interaction \(H_{A,\text{ dip.}}\) were also calculated in\(^{(1)}\):

\[
H_{A,\text{ cryst.}} = 1.17 \text{kOe}, \quad H_{A,\text{ dip.}} = 6.80 \text{kOe}.
\]

We here obtain a value of \(H_A\) that considerably exceeds our experimental value, possibly because of the extreme simplifications used in\(^{(1)}\).

In Fig. 3 the experimental dependence of \(H_{AE}\) is compared with the square of the Brillouin function for \(s = 5/2\) (the continuous curve). At high temperatures the experimental points are well fitted by the curve. We therefore conclude that at high temperatures the anisotropy energy \(K_A = \chi_H H_{AE}\) is proportional to the square of the magnetization of the sublattices. This result indicates that the anisotropy energy receives its main contribution from the dipolar energy. At low temperatures our experiments are insufficiently accurate for any comparison with current spin-wave theories.

A very interesting result, for which we can propose no reasonable explanation, consists in the fact that the peak of the line-width temperature dependence is not located at the transition temperature.

The authors are indebted to P. L. Kapitsa for his interest. We also thank I. E. Dzyaloshinskii for valuable suggestions and discussions, S. V. Petrov for growing the CsMnF\(_3\) crystals, G. E. Karstens and A. G. Bol'shakov for the x-ray study and orientation of the crystals, and K. I. Rasokhin for experimental assistance.