ON THE THEORY OF GAPLESS SUPERCONDUCTIVITY IN ALLOYS CONTAINING PARAMAGNETIC IMPURITIES

A. I. RUSINOV

P. N. Lebedev Physical Institute, U.S.S.R. Academy of Sciences
Submitted January 15, 1969

The theory of superconductors containing paramagnetic impurities is generalized to the case when the scattering of electrons by an isolated impurity is not weak. An exact calculation of the scattering of electrons by an impurity with spin S leads to the appearance of local states lying inside the gap. It is shown that the order parameter does not change substantially near an impurity. For finite impurity concentrations, these states are responsible for the experimentally-observed broadening of the region of gapless superconductivity. For the calculations it is assumed that the impurity spin S is a classical vector.

The theory of superconductors containing a small number of magnetic impurities was developed by Abrikosov and Gor'kov (AG). They showed that the critical temperature T_C of such an alloy decreases monotonically with an increase of the concentration n of magnetic impurities and vanishes at a certain value $n = n_{cr}$. On the other hand, it was found that the absorption threshold ω_0 in such a system is not in good agreement with the value of the order parameter Δ at $T = 0$; the decrease of ω_0 with concentration n takes place somewhat more rapidly than for the quantity $\Delta(n)$. According to the calculation the value at which the threshold ω_0 tends to zero corresponds to a concentration n_{cr}.

Somewhat later the phenomenon of gapless superconductivity in magnetic alloys was confirmed in the tunneling experiments by Reif and Woolf. However, in contrast to the prediction of the AG theory, the experimental value of n_{cr} turned out to be substantially smaller and approximately equal to $0.5 n_{cr}$. An opinion was expressed that ferromagnetic ordering of the impurity spins at low temperatures is a consequence of the Meissner effect ($\Delta \neq 0$), and at the same time its energy spectrum starts from zero ($\omega_0 = 0$), just like in a normal metal. This phenomenon is called gapless superconductivity.

In this article we show that agreement with the data can also be obtained for a paramagnetic phase (the impurity spins are not ordered) if, in contrast to the AG theory, the interaction between an electron and an impurity is not assumed to be weak. The essential point consists in the fact that, as shown in an exact calculation of the scattering of an electron by an isolated magnetic impurity in the case of a superconductor, the position of the local level inside the energy gap corresponds to excited states of Cooper pairs near the impurity. Below we will see that simultaneous account of the scattering processes on many impurities leads to the appearance of an absorption edge with a minimum energy ω_0, which is smaller than in the AG theory, in accordance with this the smallest concentration n_{cr} at which the threshold vanishes ($\omega_0 = 0$) also turns out to be smaller and dependent on the relative magnitude of the interaction (i.e., the ratio of the exchange interaction J of an electron with an impurity to the Fermi energy μ).

Let us write the interaction of an electron (at the point r) with the i-th impurity in the form

$$ V_i = U(r - r_i) + \sigma S(r - r_i), $$

where S is the spin of the impurity, and σ denotes the Pauli matrices ($\sigma^2 = 1$). In the AG theory V_i is taken into account in the Born approximation. In this case the final results actually do not depend on whether we regard the spin S as a classical vector or as an operator. In higher-order approximations the above statement ceases to be valid as a consequence of the well-known Kondo anomaly, which is a reflection of the specific commutation rules of the spin operator. In the following account we shall neglect the Kondo effect, i.e., we shall regard the spin S as a classical vector. This is apparently valid provided the impurity spin is sufficiently large ($S \gg 1$). A more detailed analysis shows that in practice this restriction is not too strong.

1. LOCAL LEVELS NEAR AN ISOLATED IMPURITY

Regarding the spin as a classical vector, let us first consider the case of a single impurity located at the origin of coordinates ($r_1 = 0$). For the calculations we shall use Gor'kov's technique in matrix form, as set forth in.

The Green's function $\phi_\omega(p, p')$ for a superconductor in the presence of an impurity is given by the expression

$$ \phi_\omega(p, p') = \phi_0^{(1)}(p) \delta_{pp'} + \phi_0^{(1)}(p) \phi_0^{(1)}(p') \delta_{pp'}(\omega) \phi_0^{(1)}(p'), $$

where $\phi_0^{(1)}(\omega)$ is the vertex part, which satisfies the equation...
\[\hat{\mathcal{S}}_{\text{pp}}(\omega) = \hat{V}_{\text{pp}} + \int \hat{V}_{\text{pp}} \hat{\Theta}_{\omega}^{(0)}(p) \hat{\mathcal{S}}_{\text{pp}}(\omega) \hat{\Theta}_{\omega}^{(0)}(p) \]

(3)

The matrices \(\hat{\Theta}_{\omega}^{(0)} \) and \(\hat{V} \) appearing here have the form:

\[\hat{\Theta}_{\omega}^{(0)}(p) = \begin{pmatrix} \hat{\Theta}_{\omega}^{(0)}(p) & i \hat{\Theta}_{\omega}^{(0)}(p) \\ -i \hat{\Theta}_{\omega}^{(0)}(p) & -\hat{\Theta}_{\omega}^{(0)}(p) \end{pmatrix}, \]

\[\hat{V}_{\text{pp}}(\omega) = \begin{pmatrix} V_{\text{pp}}(\omega) & 0 \\ 0 & V_{\text{pp}}(\omega) \end{pmatrix}. \]

(4)

(5)

where \(\omega = \omega_0 = \pi T (2n + 1), \quad \xi = (p^2/2m) - \mu. \) In writing down Eqs. (2) and (3) it was assumed that the parameter \(\Delta \) is unchanged by the introduction of a single impurity. Justification of this assumption will be given below.

In connection with the integration over \(p_1 \) in Eq. (3), we now exclude the region of momenta far from the Fermi surface. One can do this in the general form by introducing the amplitude \(\hat{f}_{\text{pp}} \) for the scattering of an electron by an impurity in place of the potential \(\hat{V}_{\text{pp}} \), in analogy to the way this is done for a nonmagnetic impurity. \(\text{[a]} \)

Then

\[\hat{f}_{\text{pp}}(\omega) = \frac{2\pi}{m} \hat{f}_{\text{pp}} + p_0 \int_{\omega} \hat{f}_{\text{pp}} \hat{\Theta}_{\omega}^{(0)} \hat{\Theta}_{\omega}^{(0)} \frac{d\omega}{4\pi}. \]

(6)

The momenta entering into this equation lie on the Fermi surface: \(|p| = |p_1| = |p'| = p_0. \) The bar denotes integration over the energy:

\[\hat{f}_{\text{pp}} = \int_{\omega} \hat{f}_{\text{pp}} \hat{\Theta}_{\omega}^{(0)} \frac{d\omega}{4\pi} = \frac{1}{\sqrt{\omega^2 + \Delta^2}} \frac{\omega - i\omega_0 - i\omega_0\Delta}{i\omega_0 \Delta + i\omega}. \]

(7)

The amplitude \(\hat{f}_{\text{pp}} \) has the dimension of a length and satisfies the equation

\[\hat{f}_{\text{pp}} = \frac{m}{2\pi} \hat{V}_{\text{pp}}(\omega) - \hat{f}_{\text{pp}} \frac{\partial \hat{f}_{\text{pp}}}{\partial \omega}(2\pi/\hbar). \]

(8)

In order to determine the vertex part \(\hat{f}_{\text{pp}}^{(0)}(\omega) \), we expand the corresponding quantities in Eq. (6) in terms of Legendre polynomials:

\[\hat{f}_{\text{pp}}^{(0)} = \sum_{n=0}^{\infty} \frac{(2l + 1)}{2} \hat{f}_{\text{pp}}^{(0)}(bn'), \]

(9)

where \(n = p/|p| \). As a result for the \(l \)-th harmonic we obtain

\[\hat{f}_{\text{pp}}^{(0)}(\omega) = \hat{f}_{\text{pp}}^{(0)} + p_0 \hat{f}_{\text{pp}}^{(0)} \hat{\Theta}_{\omega}^{(0)}(wn'). \]

(10)

Let us choose the direction of \(\textbf{S} \) along the \(z \) axis; then one can write the solution of Eqs. (10) and (7) in the form:

\[\hat{f}_{\text{pp}}^{(0)}(\omega) = \left(\begin{array}{ccc} \hat{z}_i & 0 & 0 \\ 0 & \hat{z}_s & 0 \\ 0 & 0 & \hat{z}_s \end{array} \right). \]

(11)

\[\hat{z}_i = \frac{(2\pi/m)\arctan \Delta}{R_I} \frac{\omega_{\text{pp}}^2 + \Delta^2 - ip_0\omega_{\text{pp}}}{\sqrt{\omega_{\text{pp}}^2 + \Delta^2 + i\omega}}, \]

(12)

\[\hat{z}_s = \frac{(2\pi/m)\arctan \Delta}{R_I} \frac{1}{\sqrt{\Delta^2 - \omega^2}}, \]

\[\tau_v = \Delta (1 + \sqrt{\tau_v^2 + 4\tau_0^2}), \quad R_I = \left(1 + \sqrt{\tau_v^2 + 4\tau_0^2} \right). \]

(13)

where \(\omega_{\text{pp}} = \omega - i\omega_0 + \sqrt{\omega^2 + \Delta^2} \).

for \(J > 0 \); for \(J < 0 \) one must make the following substitutions: \(\hat{z}_i = \hat{z}_s \) and \(\hat{z}_s = \hat{z}_i \). An asterisk denotes the operation of complex conjugation. The amplitudes \(f^\dagger \) describe the scattering of an electron by an impurity in a state with orbital momentum \(l \) and spin projection \(\pm \frac{l}{2} \) in a normal metal.

In order to determine the possible bound states in the system associated with the presence of an impurity we must, according to general rules \(\text{[16], Secs. 4, 17] } \), construct the analytic continuation of the Matsubara vertex \(\Gamma^{(0)}(\omega) \) into the upper half-plane of complex values \(\epsilon = \omega \). Setting \(\omega = \omega + \epsilon + i\epsilon \) in Eqs. (12) and (13), one can easily see that the function \(\Gamma^{(0)}(\epsilon) = \hat{f}_0^{(0)}(\epsilon) - \hat{f}_0^{(0)}(\epsilon - 6) \) satisfies the formulated condition in the complex \(\epsilon \) plane with cuts along the real axis from \(-\infty \) to \(-\Delta \) and from \(\Delta \) to \(+\infty \). The pole of \(\Gamma^{(0)}(\epsilon) \) at \(\epsilon = \epsilon_0 - \epsilon \) gives the energy \(\epsilon_0 \) of the bound state with orbital momentum \(l. \)

Expression (14) for \(\epsilon_0 \) was previously obtained in \(\text{[a]} \) by another method; an expression was given there for the wave function of this state. Here we shall not cite the corresponding formulas and only note that the contribution of the pole \(\omega = \epsilon_0 \) to the Green's function (2) for \(T = 0 \) in coordinate space falls off at distances \(r \sim \xi 1/(1 - \epsilon_0^2/\Delta^2)^{1/2} \) as one goes away from the impurity, in contrast to the case of a pure superconductor for which the Green's function \(\Theta^{(0)}(r - r') \) falls off at the coherence length \(\sqrt{\Delta} \). The considerations given below for finite impurity concentrations indicate that, as a consequence of the rapid oscillations of the electron wave functions at the Fermi surface, the interaction of these local levels becomes important for \(n \sim \xi 1/\Delta \) (compare with the case of two impurities in article[16]).

Finally we present an expression, which will be useful in what follows, for the energy levels \(\epsilon_0 \) in terms of the phases \(\theta_0 \) for the scattering of an electron by an impurity:

\[\epsilon_0 = \Delta \cos (\theta_0^s - \theta_0^r), \quad m \theta_0^r = \mu/\epsilon_0. \]

(15)

2. SPATIAL VARIATIONS OF \(\Delta \)

Now let us briefly discuss the question of the spatial variation of the parameter \(\Delta(r) \) near a paramagnetic impurity. For a nonmagnetic impurity this problem was studied in detail in \(\text{[12]} \), and it was shown that the entire variation of \(\Delta(r) \) near an impurity reduces to small oscillating (over atomic distances) corrections. This is in complete agreement with the fact that, in general, the ordinary scattering does not have any effect on the critical temperature \(T_C \) of a superconductor (see \(\text{[9]}, \text{Sec. 39]} \).)

The situation is somewhat different in the case of a magnetic impurity. As we now see, here the correction \(\Delta_{\text{pp}}(r) = \Delta_0(r) - \Delta \) remains finite after averaging the atomic oscillations; however, it is extremely small in magnitude. Near the critical temperature \(\Delta = \epsilon_0 = 0 \).
the variation $\delta \Delta (\mathbf{r})$ was previously calculated in [103]; for $n \ll n_{cr}$ the relative correction to the AG result for $T_{c}(n)$ turned out to be insignificantly small, $\sim 10^{-8}$ to 10^{-7}, which justifies the assumption in the AG theory about the constancy of Δ in space. In the presence of isolated states inside the gap, this conclusion remains valid at absolute zero.

Variation of the parameter $\Delta (\mathbf{r})$ near an impurity leads to the appearance of an additional term of the form

$$\delta \Delta_{\mathbf{q}}(\mathbf{r}, \mathbf{p}) = \delta \Delta_{0}(\mathbf{q}) \delta \mathbf{p} \cdot \mathbf{q} \delta \mathbf{q}_{\mathbf{r}}(\mathbf{p}).$$

in the right-hand side of Eq. (2), where the matrix $\delta \mathbf{q}$ has the form

$$\delta \mathbf{q}_{\mathbf{r}} = -\mathbf{i} \mathbf{c}_{\mathbf{q}} \delta \mathbf{q} \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right).$$

By definition,

$$\Delta_{\mathbf{q}} = -|\mathbf{g}|^{2} \sum_{\mathbf{r}} \mathbf{q}_{\mathbf{r}} \left(p + \frac{1}{2} q, \mathbf{p} - \frac{1}{2} q, \mathbf{a}, \mathbf{q} \right) \frac{d \mathbf{p}}{(2\pi)^{2}},$$

where $\mathbf{q}_{\mathbf{r}}$ is the element, standing in the upper right-hand corner, of the matrix (2) with the additional term (16) taken into consideration, and g is the electron-electron interaction constant corresponding to attraction ($g < 0$). Considering the second term in (2) as a perturbation, to first order in $|\mathbf{g}|^{2}$ one can write

$$\left| \mathbf{g} \right|^{2} \sum_{\mathbf{r}} \left(\mathbf{q}_{\mathbf{r}} \left(p + \frac{1}{2} q, \mathbf{p} - \frac{1}{2} q, \mathbf{a}, \mathbf{q} \right) \right) \delta \mathbf{q}_{\mathbf{r}} \left(p + \frac{1}{2} q, \mathbf{p} - \frac{1}{2} q, \mathbf{a}, \mathbf{q} \right) \frac{d \mathbf{p}}{(2\pi)^{2}}.$$
multaneously by several impurities can be neglected. In [11] it is shown that the neglected terms lead to corrections \(\sim 1/p_{j}l \ll 1 \). In addition, we have taken into consideration the fact that the parameter \(\Delta \) can be regarded as constant in space with a high degree of accuracy.

If the scattering by an impurity is weak, then in the second term in Eq. (27) one can set \(\hat{z} = \hat{V} \) and obtain the AG theory.

Introducing the exact amplitude \(\hat{f}_{pp} \) for the scattering of an electron by an impurity, we write Eq. (27) in complete analogy with the case of a single impurity:

\[
\hat{f}_{pp}(\omega) = -\frac{2\pi}{m_{p}} e_{p} + \rho_{0} \sum_{\sigma} \hat{e}_{\sigma} \hat{f}_{pp}(\omega) d_{\lambda} / 4\pi \tag{28}
\]

The notation is the same as in Eq. (6). In order to avoid misunderstandings involving the notation, we note that in Eq. (26) the function \(\hat{z} \) is assumed to already be averaged over the directions of the impurity spin, but this has not been done in Eqs. (27) and (28); on the other hand in both cases the function \(\hat{z} \) is assumed to be averaged (i.e., it does not depend on the direction of \(S \)).

Thus, in order to obtain the averaged \(\hat{z} \), it is necessary to solve Eq. (28) in general form and then carry out the necessary averaging.

Let us assume that the function \(\hat{z} \) has the same structure as \(\hat{e}(\omega) \), namely,

\[
\hat{e}(\omega) = (\hat{v}_{x} + j \hat{v}_{y} + \hat{v}_{z} + j \hat{v}_{z} + \hat{e} \hat{A} \hat{z}) / (j\omega - \hat{v}_{y} + \hat{v}_{z} + j \hat{v}_{z} + \hat{e} \hat{A} \hat{z}) \tag{29}
\]

It is also natural to seek the averaged vertex part \(\hat{z} \) in the form (11):

\[
\hat{z} = (\hat{z}_{1} + j \hat{z}_{2}) \tag{30}
\]

Here we have used the following obvious property: \(\hat{z}_{1} = \hat{z}_{1} \) and \(\hat{z}_{2} = \hat{z}_{2} \) a result of averaging over the directions of \(S \). The final result is in agreement with the assumptions which have been made.

Substituting (29) and (30) into (28), one can easily obtain the following relations between the quantities that have been introduced:

\[
\omega = \omega - n \text{Re} \hat{z}_{0}(0, \omega), \quad \hat{z} = \Delta + n \hat{z}_{1}(0, \omega), \tag{31}
\]

where \(\hat{z}(0, \omega) = \hat{z}(p, p; \omega) \) is the vertex part for forward scattering.

It remains for us to solve Eq. (28); the matrix \(\hat{\omega} \hat{\omega} \), in accord with (29), is given by formula (7) in which it is necessary to make the following substitutions: \(\hat{w}, \hat{\Delta} \to \hat{\omega}, \hat{\Delta} \). In view of the cumbersome nature of the resulting expressions, we cite only the result for the averaged values of \(\hat{z} \):

\[
\begin{align*}
\text{Re} \hat{z}_{1}^{(l)}(\omega) = & \frac{\pi}{2m_{p}} \omega^{2} + \frac{\hat{\Delta}^{l}}{2} \sin 2(\hat{d}_{l} - \hat{\delta}) - \frac{\hat{d}_{l}^{l}}{2} \sin 2(\hat{d}_{l} - \hat{\delta}), \\
\text{Im} \hat{z}_{1}^{(l)}(\omega) = & -\frac{\pi}{2m_{p}} \omega^{2} + \frac{\hat{\Delta}^{l}}{2} \sin 2(\hat{d}_{l} + \hat{\delta}) - \frac{\hat{d}_{l}^{l}}{2} \sin 2(\hat{d}_{l} + \hat{\delta}), \\
\hat{z}_{2}^{(l)}(\omega) = & \frac{2m_{p}}{2} \frac{\hat{\Delta}}{\omega^{2} + \frac{\hat{\Delta}^{l}}{2} \sin 2(\hat{d}_{l} - \hat{\delta}) - \frac{\hat{d}_{l}^{l}}{2} \sin 2(\hat{d}_{l} - \hat{\delta}).
\end{align*}
\tag{32}
\]

where \(\hat{\Delta} \) is the value of \(\Delta \) in regard to the uniform concentration is determined by the equation \[11\]

\[
\Delta \text{Re} \hat{z}_{1}^{(l)}(\omega) = \frac{m_{p} \omega}{4\pi} \left[(\hat{v}_{l}^{l})^{2} + (\hat{v}_{l}^{l})^{2} \right] \frac{\omega^{2} + \frac{\hat{\Delta}^{l}}{2} \sin 2(\hat{d}_{l} - \hat{\delta}) - \frac{\hat{d}_{l}^{l}}{2} \sin 2(\hat{d}_{l} - \hat{\delta}).
\tag{32'}
\]

In this case the quantity Re \(\hat{z}(0, \omega) \) in formula (31) does not depend on the frequency \(\omega \) and may be included in the chemical potential \(\mu \). In general this is not so in the simultaneous presence of exchange and ordinary scattering. However, this property is unimportant for an investigation of the static properties of the system since upon integration over \(\hat{z} \) of the expressions containing the Green's function with the same frequency, the component n Re \(\hat{z}(0, \omega) \) drops out of the answer.

Substitution of (32') into (31) finally gives

\[
\omega = \omega - n \frac{\pi}{m_{p}} \sum_{l} (2l + 1) \sin^{2} \hat{d}_{l} + \sin^{2} \hat{d}_{l} \frac{\eta \hat{\Delta}}{\eta \hat{\Delta} + \hat{\Delta}}
\tag{33}
\]

where \(\eta = \hat{\omega} / \hat{\Delta} \) satisfies the equation

\[
\omega = \eta \left[\Delta + \frac{m_{p}}{2} \sum_{l} (2l + 1) \sin^{2} \hat{d}_{l} + \sin^{2} \hat{d}_{l} \right]
\tag{34}
\]

Let us consider the case of absolute zero in more detail; here for simplicity we shall regard the scattering as isotropic (\(l = 0 \)). The dependence of \(\Delta \) on the impurity concentration is determined by the equation

\[
\Delta \text{Re} \hat{z}_{1}^{(l)}(\omega) = \frac{m_{p} \omega}{4\pi} \left[(\hat{v}_{l}^{l})^{2} + (\hat{v}_{l}^{l})^{2} \right] \frac{\omega^{2} + \frac{\hat{\Delta}^{l}}{2} \sin 2(\hat{d}_{l} - \hat{\delta}) - \frac{\hat{d}_{l}^{l}}{2} \sin 2(\hat{d}_{l} - \hat{\delta}).
\tag{32''}
\]

where \(\Delta_{0} \) is the value of \(\Delta \) for a pure superconductor. With the aid of a change of the integration variable \(dw = (dw / dp) dp \) formula (34), one can express the result in terms of elementary functions:

\[
\begin{align*}
\Delta \text{Re} \hat{z}_{1}^{(l)}(\omega) = & \frac{m_{p} \omega}{4\pi} \sum_{l} (2l + 1) \sin^{2} \hat{d}_{l} + \sin^{2} \hat{d}_{l} \left[\eta \hat{\Delta} \right]^{3/2} \\
\Delta \text{Re} \hat{z}_{1}^{(l)}(\omega) = & \frac{m_{p} \omega}{4\pi} \sum_{l} \left[(2l + 1) \sin^{2} \hat{d}_{l} + \sin^{2} \hat{d}_{l} \right] \left[\eta \hat{\Delta} \right]^{3/2}
\end{align*}
\tag{35}
\]

where

\[
\eta \hat{\Delta}^{3/2} / (\Delta_{0}^{3/2}) = 1 - 2 \text{Re} \hat{z}_{1}(0, \omega) / (4\pi)
\tag{36}
\]

The parameter \(\tau_{S} \) represents the time it takes for an electron spin to flip during impurity scattering processes. In the Born approximation \(\Delta_{0} \ll 1 \) formulas (36) go over into the formulas of the AG theory. According to (36) the vanishing of superconductivity \(\Delta = 0 \) takes place at the concentration \(n = n_{c} \), at which \(\tau_{S} \Delta_{0} = 2 \). We note that the non-Born nature of the scattering now develops in the terms \(\sim \Delta^{2} \), i.e., in the region where the Ginzburg-Landau equations are not applicable. Thus, for isotropic scattering (at \(T = 0 \))

\[
\tau_{S} \Delta_{0}^{3} = \frac{n_{c} - n}{n_{c} - n_{c}} = \frac{n_{c} - n}{n_{c} - n_{c}}, \tag{37}
\]

A. I. RUSINOV
In the general case of anisotropic scattering and arbitrary \(\Delta \) the results depend in a complicated way on various superpositions of all the harmonics \(f_n^c \). It is of great interest to determine the absorption threshold and the corresponding structure (i.e., the density of states) near it. The retarded Green’s function \(\tilde{G}(p, \omega) \) gives the answer to this question. In \(^\text{(1)}\) it is shown that for its construction one must make the following substitutions in formulas (29), (33), and (34): \(\omega_n \rightarrow -i\omega_n, \quad \gamma_n \rightarrow -i\gamma_n, \quad \omega_n \rightarrow -i\omega_n, \Delta_n \rightarrow \Delta_n \) and one must define the root as the analytic continuation of the coefficient \(+\sqrt{1-\eta^2} \) for \(|\eta| < 1 \) into the upper half-plane of the variable \(\eta \). Then the absorption threshold is the minimum frequency \(\omega_0 > 0 \) for which the roots of the equation

\[\omega = \eta \left(\Delta - \frac{1}{\epsilon_\nu e^{2\eta^2} - \eta^2} \right), \quad 0 \leq \eta \leq \epsilon_\nu \]

(38)

become complex for \(\omega > \omega_0 \). It is easy to see that for \(\tau_0 \Delta > 1/\epsilon_\nu^2 \) and as \(\omega \rightarrow 0 \) this equation always has a real solution \(\eta \) lying in the interval \(0 < \eta < \epsilon_\nu \) that is an energy gap in the spectrum of the system. The magnitude of the gap \(\omega_0(\epsilon_\nu, \epsilon_\nu) \) is equal to the largest value of the right-hand side of Eq. (35), i.e., it is obtained from the condition \((d\omega/d\eta)|_{\omega_0} = 0 \). The resulting equation can only be solved numerically. In the limit of small concentrations \((n < n_{cr})\) the gap in the spectrum is equal to \(\omega_0 = \epsilon_\nu \Delta_n \) which reflects the presence of a discrete level (with \(l = 0 \)) for an isolated impurity, obtained in Sec. 1.

On the other hand, for \(\tau_0 \Delta \leq 1/\epsilon_\nu^2 \) Eq. (38) does not have any real solutions, i.e., \(\omega_0 = 0 \). From (36) it follows that the gap vanishes at the concentration

\[n_{cr}' = 2\epsilon_\nu e^{2\eta_0} \exp \left[-\pi\eta_0 / 2(1 + \epsilon_\nu) \right]. \]

(39)

The phenomenon of gapless superconductivity occurs in the region \(n_{cr}' < n < n_{cr} \). In the Born approximation \((\epsilon_\nu = 1)\) \(n_{cr}' = 0.91 n_{cr} \) the value which follows from the AG theory. As is evident from Eq. (39) the presence of impurity levels \((\epsilon_\nu > 1)\) leads to a broadening of the region of gapless superconductivity. It is natural to expect that taking account of higher harmonics in the scattering leads to a further decrease of \(n_{cr}' \).

As mentioned at the very beginning, in the experiments of Reif and Woolf\(^\text{12}\), the value of \(n_{cr}' \) was approximated equal to \(0.5 n_{cr} \). As alloys they used iron atoms in indium.\(^\text{13}\) Within the framework of the stated theory, from here one can conclude that for such an alloy of indium containing iron impurities, the exchange interaction of the conduction electrons is not weak. One can obtain a rough estimate of the magnitude of the exchange interaction with the aid of Eq. (39) if one sets \(n_{cr}' = 0.5 n_{cr} \) in it. This gives \(\epsilon_\nu \approx 0.6 \) which, according to (13), is a quite reasonable value for the amplitudes \(f_n^c = -f_n^c = 0.1 \epsilon_\nu^{-1} \) (we assumed \(U = 0 \)).

In conclusion let us calculate the heat capacity in the gapless region at low temperatures. For this it is obviously sufficient to know the density of states \(N_\varphi(\omega) \) for excitations of small energies. According to general rules of statistics,

\[N_\varphi(\omega) = \frac{1}{\pi} \text{Im} \int \tilde{G}(p, \omega) \frac{dp}{(2\pi)^3} \]

(40)

(for a given spin direction). Taking what has been said above into account, we have

\[N_\varphi(\omega) = N_\varphi \eta \frac{n_\varphi}{\sqrt{1 - \omega^2}} \]

(41)

where \(N_\varphi = m\rho_0/2\pi^2 \) is the corresponding density of states in the normal metal. For \(\omega \rightarrow 0 \) and \(\tau_0 \Delta < 1/\epsilon_\nu^2 \) the result (38) is purely imaginary \((\eta = \eta_0)\); an expression for \(\eta_0 \) is given above (see Eq. (36)). Consequently

\[N_\varphi(\omega) = N_\varphi \eta_0 \frac{n_\varphi}{\sqrt{1 - \omega^2}} \]

(42)

In view of the fact that \(N_\varphi(\omega) \propto \omega \) as \(\omega \rightarrow 0 \), an expression for the heat capacity can be written down at once:

\[C_\varphi(T) = \frac{\pi^3}{3} 2N_\varphi T \frac{m\rho_0}{\sqrt{T}} \frac{n_\varphi}{\sqrt{T}} \]

(43)

At the point \(\tau_0 \Delta = 1/\epsilon_\nu^2 \) the coefficient in the heat capacity vanishes \((\eta_0 = 0)\); this corresponds to the concentration \(n_{cr}' \) and only indicates that the heat capacity does not vary faster than linearly as a function of \(T \). In the region \(n < n_{cr} \) the electronic heat capacity has an exponential character. However, since the investigation can be successfully carried out only in the uninteresting region of very small concentrations, we shall not cite the corresponding formulas here.

In conclusion I wish to thank L. P. Gor’kov and G. M. Eliashberg for their attention to this work and for valuable suggestions, and I also thank I. E. Dzyaloshinskii and A. I. Larkin for a discussion.

\(^3\) F. Reif and M. A. Woolf, Phys. Rev. Lett. 9, 315 (1962).
\(^6\) A. L. Rusinov, ZhETF Pisma Red. 9, 146 (1969) [JETP Lett. 9, 85 (1969)].
\(^7\) J. Kondo, Progr. Theoret. Phys. (Kyoto) 33, 575 (1965).
Translated by H. H. Nickle 237