SPECTRAL REPRESENTATIONS OF MATRIX ELEMENTS

R. V. TEVIKYAN

Physics Institute, Academy of Sciences, Armenian S.S.R.

Submitted to JETP editor July 3, 1961

Spectral representations are obtained for the matrix elements of the product of n scalar Heisenberg operators.

This paper presents a generalization of the integral representation of Dyson,\(^3\) based on the methods of Schwinger\(^1\) and Gribov,\(^2\) in which anomalous regions of integration do not arise.

1. Consider the mean in vacuum of the product of three scalar operators

\[F_{123}^{(c)}(x_{12}, x_{23}) = \langle 0 | q_1(x_1) q_2(x_2) q_3(x_3) | 0 \rangle, \]

where \(x_{ik} = x_i - x_k \). The function (1) contains only positive frequencies and consequently is analytic relative to time coordinates in the region

\[x_{12}^0 \to x_{12}^0 - i\epsilon_1, \quad \epsilon_1 > 0, \]
\[x_{23}^0 \to x_{23}^0 - i\epsilon_2, \quad \epsilon_2 > 0, \]

where the \(\epsilon \) are arbitrary positive constants, which we consider to be infinitesimally small.

According to (2), this function will have a spectral representation with a factor in the integrand if

\[\int _{\epsilon_3 > 0} \frac{d\epsilon_3}{2\pi} \int \frac{d\epsilon_2}{2\pi} \int \frac{dk}{2\pi} e^{ikx - i\epsilon_3}, \]

in the integrand if

\[\alpha_1 x_{12}^0 + \alpha_2 x_{23}^0 > 0, \quad \beta_1 x_{12}^0 + \beta_2 x_{23}^0 > 0, \]

i.e.,

\[F_{123}^{(c)}(x_{12}, x_{23}) = \int \exp \left(-i\alpha_1 x_{12}^0 - i\alpha_2 x_{23}^0 - i\alpha_3 x_{13}^0 \right) \theta(x_{12}^0) \theta(x_{23}^0) \]
\[+ \int \exp \left(-i\beta_1 x_{12}^0 - i\beta_2 x_{23}^0 \right) \theta(x_{12}^0) \theta(x_{23}^0) \psi_{123}(x_1, x_2, x_3) \psi_{123}(x_1, x_2, x_3) \]
\[\times d\alpha_1 d\beta_1 d\alpha_2 d\beta_2 d\alpha_3 d\beta_3. \]

The spectral representation of the T-product can be obtained by assuming \(x_{12}^0 > 0 \) and \(x_{23}^0 > 0 \) in (4). In this case, it follows from (4) and the symmetry properties of the T-product that

\[F_{123}^{(c)}(x_{12}, x_{23}) = \int \exp \left(-i\alpha x_{12}^0 - i\beta x_{23}^0 \right) \psi_{123}(x_1, x_2, x_3) \psi_{123}(x_1, x_2, x_3) \]
\[\times d\alpha d\beta d\gamma, \]

Introducing the Fourier transform of the function

\[\psi_{123}(1/4\alpha_1, 1/4\alpha_2, 1/4\alpha_3), \]
\[\psi_{123}(x_1, x_2, x_3) = (2\pi)^3 \int \exp \left\{ -x_{12}^2 \frac{\alpha_1^2}{4\epsilon_1} - x_{13}^2 \frac{\alpha_2^2}{4\epsilon_2} - x_{23}^2 \frac{\alpha_3^2}{4\epsilon_3} \right\} \]
\[\times I_{123}(x_{12}^2, x_{13}^2, x_{23}^2) d\alpha_1 d\alpha_2 d\alpha_3, \]

we obtain

\[F_{123}^{(c)}(x_{12}, x_{23}) \]
\[= (2\pi)^6 \int_0^\infty D^{(c)}(x_{12}, x_{12}) D^{(c)}(x_{13}, x_{13}) D^{(c)}(x_{23}, x_{23}) \]
\[\times I_{123}(x_{12}^2, x_{13}^2, x_{23}^2) d\alpha_1 d\alpha_2 d\alpha_3; \]

\[D^{(c)}(x, m) = \frac{1}{(2\pi)^3} \int e^{ikx - \frac{1}{2}m^2 - \frac{1}{2}k^2 - i\epsilon} dk; \]

the parameters \(k^2 \) take on only positive values, since they characterize the mass spectra.

From considerations of relativistic invariance, it follows that the conditions (3) in (4) can be replaced by the requirement

\[\alpha_1 x_{12}^0 > 0, \quad \alpha_2 x_{23}^0 > 0, \quad \alpha_3 x_{13}^0 > 0 \]

and one can write

\[F_{123}^{(c)}(x_{12}, x_{23}) = (2\pi)^6 \int_0^\infty D^{(c)}(x_{12}, x_{12}) D^{(c)}(x_{13}, x_{13}) D^{(c)}(x_{23}, x_{23}) \]
\[\times I_{123}(x_{12}^2, x_{13}^2, x_{23}^2) d\alpha_1 d\alpha_2 d\alpha_3; \]

\[D^{(c)}(x, m) = \frac{i}{(2\pi)^3} \int e^{ikx} \left(-k^2 - \frac{1}{2}m^2 \right) \delta (k^2 - m^2) dk. \]

2. Let us turn to a consideration of the matrix element of the product of three operators

\[F_{123}(x_{12}, x_{23}) = \langle P | q_1(x_1 - \bar{x}) q_2(x_2 - \bar{x}) q_3(x_3 - x) | Q \rangle, \]

where \(\bar{x} = (x_1 + x_2 + x_3)/3 \), the prime indicates calculation only of connected diagrams, and \(P \) and \(Q \) are the total momenta of the arbitrary states \(| P \rangle \) and \(| Q \rangle \). From the spectral condition it follows that

\[F_{123}(x_{12}, x_{23}) = \int e^{-i\alpha x_{12}^0 - i\beta x_{23}^0} \theta(2P + Q + p_1) \theta(2P + Q + p_2) \]
\[\times \hat{F}_{123}(p_1, p_2) dp_1 dp_2, \]

where

\[\hat{F}_{123}(p_1, p_2) \neq 0 \]

for

545
\[
\left(\frac{1}{2}(2P + Q) + p_3\right)^2 \geq (m_{123}^2)^2, \quad \frac{1}{2}(2P + Q) + p_1 \in L^*; \hfill (\frac{1}{2})(2P + Q) + p_2 \geq (m_{12}^2)^2, \quad \frac{1}{2}(2P + Q) + p_2 \in L^*; \hfill
\]

where the \(m \) are the minimum masses of the intermediate states, and \(\theta(p) = \theta(p^0) \theta(p^3) \) is an invariant discontinuous function.

Function (6) can be written in the form

\[
F_{123}(x_{12}, x_{23}) = \int \exp \left(-ix_{12}p_{12} - ix_{13}(p_{13} - p_{12}) - ix_{23}p_{23} - ix_{24}p_{24} \right) dt_{12}, dt_{13}, dt_{23}, dt_{24},
\]

from which we obtain

\[
\tilde{F}_{123}(\rho_1, \rho_2) = \int \delta(\rho_1 - k_{12} - k_{13} - u_1) \delta(\rho_2 - k_{13} - k_{23} - u_2) \times \tilde{F}_{123}(k_{12}, k_{13}, k_{23}, u_1, u_2) dt_{12}, dt_{13}, dt_{23}, dt_{24},
\]

(10)

The occurrence of spectral representations of type (7) means that we can set

\[
\tilde{F}_{123}(k_{12}, k_{13}, k_{23}, u_1, u_2) = \theta(k_{12}) \theta(k_{13}) \theta(k_{23}) \left(\frac{1}{2}(2P + Q) + u_1 \right) \times \theta(\frac{1}{2}(2P + Q) + u_2) \times \tilde{F}_{123}(k_{12}, k_{13}, k_{23}, u_1, u_2),
\]

(11)

Using (11), we obtain

\[
F_{123}(x_{12}, x_{23}) = \int_{0}^{\infty} D^{(c)}(x_{12}, x_{123}) \times D^{(c)}(x_{23}, x_{123}) I_{123}(x_{12}, x_{23}, x_{123}) \times D^{(c)}(x_{12}, x_{123}) \times D^{(c)}(x_{23}, x_{123}),
\]

(12)

where \(I_{123} \) is the Fourier transform of \(\tilde{T}_{123} \) in the variables \(u_1 \) and \(u_2 \). From the causality condition it follows that the functions

\[
I_{123}(x_{12}, x_{23}, x_{123}); \quad \delta(\rho_1 + \rho_2 + p_3) \tilde{T}_{123}(x_{12}, x_{23}, x_{123}) = m_{123}^2 \quad \text{are symmetrical relative to the indices (1, 2, 3),}
\]

(13)

From Eqs. (9)—(11) and the symmetry properties of the function \(I_{123} \) it follows that

\[
x_{12} + x_{23} \geq \max \left\{ 0, \max (m_{12}^2, m_{23}^2) \right\}
\]

\[
\left(\frac{1}{2}(2P + Q) + u_1 \right)^2 \geq (m_{12}^2)^2, \quad \frac{1}{2}(2P + Q) + u_1 \in L^*; \hfill (\frac{1}{2})(2P + Q) + u_2 \geq (m_{23}^2)^2, \quad \frac{1}{2}(2P + Q) + u_2 \in L^*;
\]

\[
\left(\frac{1}{2}(2P + Q) + u_1 \right)^2 \geq (m_{12}^2)^2, \quad \frac{1}{2}(2P + Q) + u_1 \in L^*; \hfill (\frac{1}{2})(2P + Q) + u_2 \geq (m_{23}^2)^2, \quad \frac{1}{2}(2P + Q) + u_2 \in L^*;
\]

3. A matrix element of general form

\[
F_{12 \ldots n}(x_{12}, x_{23}, \ldots, x_{n-1,n}) = \langle P | q_1(x_1 - x) q_2(x_2 - x) \ldots q_n(x_n - x) | Q \rangle,
\]

(14)

where \(F_{12 \ldots n} \) is symmetric with respect to the indices \((1, 2, \ldots, n)\) [the number of its arguments \(\kappa^n \) equals \(n(n-1)/2 \)] and has a Fourier transform

\[
\tilde{T}_{12 \ldots n}(x_{12}^2, x_{23}^2, \ldots, x_{n-1,n}^2, u_1, u_2, \ldots, u_{n-1,n}) = 0
\]

(15)

for

\[
x_{12} + x_{13} + \ldots + x_{n-1,n} \geq 0
\]

\[
\left(\frac{1}{2}(2P + Q) + u_1 \right)^2 \geq (m_{12}^2)^2, \quad \frac{1}{2}(2P + Q) + u_1 \in L^*; \hfill (\frac{1}{2})(2P + Q) + u_2 \geq (m_{23}^2)^2, \quad \frac{1}{2}(2P + Q) + u_2 \in L^*;
\]

\[
\left(\frac{1}{2}(2P + Q) + u_1 \right)^2 \geq (m_{12}^2)^2, \quad \frac{1}{2}(2P + Q) + u_1 \in L^*; \hfill (\frac{1}{2})(2P + Q) + u_2 \geq (m_{23}^2)^2, \quad \frac{1}{2}(2P + Q) + u_2 \in L^*;
\]

Consideration of the symmetry properties of \(F_{12 \ldots n} \) brings in additional limitations on the variables \(\kappa \). In particular, when \(P \) and \(Q \) correspond to vacuum states, then the functions \(F_{12 \ldots n} \) and \(I_{12 \ldots n} \) become identical with each other and depend only on the variables \(\kappa^2 \).

Translated by L. M. Matarrese