LETTERS TO THE EDITOR

675

U238, and Cf252). Secondly, the gamma quanta energies depends little on the excitation energy of the compound nucleus prior to fission.

The authors express their gratitude to Yu. I. Belyanin for insuring operation of the accelerated tube in the performance of this experiment.

Translated by J. G. Adasko 186

ZEMPLEN'S THEOREM IN RELATIVISTIC HYDRODYNAMICS

R. V. POLOVIN

Physico-Technical Institute, Academy of Sciences, Ukrainian S.S.R.

Submitted to JETP editor December 12, 1958

KHALATNIKOV1 has shown that for a relativistic shock wave of low intensity the theorem of Zemplen and the conditions of mechanical stability, \(v_1 > c_1, \quad v_2 < c_2\), are applicable provided only that the following inequality holds:

\[
\left(\frac{\partial^2 (w / n)}{\partial p^2} \right)_s > 0
\]

(1)

(where \(w\) is the heat function per particle, \(s\) the entropy per particle, \(n\) the density of particles measured in the rest system of the particles, and \(p\) the pressure.)

These results are also applicable for relativistic shock waves of any intensity. The proof can be done in a similar way to Landau and Lifshitz, (reference 2, paragraph 84,) for the case when the shock adiabate lies in the plane \((p, w/n.)\) In this case, formula (84,6) will correspond to

\[
1 - \frac{v_1^2}{c_1^2} = (V_1 - V_2) \int \left[1 - \frac{\partial^2 (V_1 - V_2)}{\partial s_2 / p_2} \right] d (\gamma^2)
\]

is replaced by

\[
1 - \frac{v_2^2}{c_2^2}
\]

\[
= \left(\frac{w_1}{n_1} \right) \left[1 - \frac{\partial^2 (w_1 / n_1)}{\partial s_2 / p_2} \right] d (\gamma^2),
\]

\(j = nu, \quad u = v / \sqrt{1 - v^2}, \quad a = c / \sqrt{1 - c^2},\)

(where \(c\) is the velocity of sound, and the velocity of light is taken as unity.) It follows from this that the quantity \(n/w\), as well as the pressure and the density, are increased on the shock wave.

The inequality (1), for the nonrelativistic case, reduces to the well known conditions,

\[
\frac{\partial^2 (1/n) \partial p^2}{\partial s^2} > 0.
\]

For a relativistic ideal gas we have

\[
\frac{\partial^2 (w / n) \partial p^2}{\partial s^2} = \frac{2 (2 - \gamma)}{\gamma (\gamma - 1)^2} p a^2.
\]

The last expression is always positive, since the quantity \(\gamma\) is within the interval3 \(1 < \gamma \leq \frac{5}{3}\).

It should be noted that for an ultra-relativistic ideal gas, \(\gamma = \frac{5}{3}\).

The author wishes to thank A. I. Akhiezer and G. Ya. Lyubarski for valuable discussions.

Translated by S. Kotz 187

ON ELECTROMAGNETIC SHOCK WAVES IN FERRITES

A. V. GAPONOV and G. I. FREIDMAN

Radiophysics Institute, Gorky State University

Submitted to JETP editor December 18, 1958

We investigate the propagation of a uniform plane electromagnetic wave in a medium with non-linear dependence of the induction \(B\) on the magnetic field \(H.\) We assume to begin with that the