PHENOMENOLOGICAL THEORY OF KINETIC PROCESSES IN FERROMAGNETIC DIELECTRICS

M. I. KAGANOV and V. M. TSUKERNIK

Physico-Technical Institute, Academy of Sciences, Ukrainian S.S.R.

Submitted to JETP editor March 22, 1958

The relaxation time resulting from the interaction of spin waves with each other, in ferromagnetic dielectrics, is calculated.

The present paper is concerned with those relaxation processes, in ferromagnets, that result from the interaction of spin waves with each other. In contrast to the work of Akhiezer,¹ the treatment is carried through without any assumption about the nominal magnetization of the ferromagnetic in its ground state.

Relaxation processes in a ferromagnetic are not limited to interactions within the spin system; spin waves also interact with lattice vibrations. However, as will be shown below, there are a number of cases in which interactions between spin waves play the fundamental role in the establishment of equilibrium.

1. THE ENERGY SPECTRUM OF A FERROMAGNET

As was shown by Herring and Kittel,² the energy spectrum of a ferromagnet in the neighborhood of the ground state can be obtained without assuming a model for the spin structure of the ground state. Instead, purely phenomenological assumptions are made in regard to the existence of exchange interaction with a positive exchange integral and, consequently, the presence of a spontaneous magnetic moment at $T = 0$.

In order to study kinetic processes in ferromagnetics, it is necessary to know not only the energy spectrum, which determines all the thermodynamic quantities but also the wave functions of the spin waves; it is by means of these that the probabilities of transition between different states of the system are calculated. Therefore we shall here use a systematic quantum-mechanical method to find the energy levels related to the motion of the magnetic moment at $T = 0$.

In order to study kinetic processes in ferromagnetics, it is necessary to know not only the energy spectrum, which determines all the thermodynamic quantities but also the wave functions of the spin waves; it is by means of these that the probabilities of transition between different states of the system are calculated. Therefore we shall here use a systematic quantum-mechanical method to find the energy levels related to the motion of the magnetic moment at $T = 0$.

In order to study kinetic processes in ferromagnetics, it is necessary to know not only the energy spectrum, which determines all the thermodynamic quantities but also the wave functions of the spin waves; it is by means of these that the probabilities of transition between different states of the system are calculated. Therefore we shall here use a systematic quantum-mechanical method to find the energy levels related to the motion of the magnetic moment at $T = 0$.

In order to study kinetic processes in ferromagnetics, it is necessary to know not only the energy spectrum, which determines all the thermodynamic quantities but also the wave functions of the spin waves; it is by means of these that the probabilities of transition between different states of the system are calculated. Therefore we shall here use a systematic quantum-mechanical method to find the energy levels related to the motion of the magnetic moment at $T = 0$.
that the magnetic energy in the ground state be a minimum:

\[
\sin(\phi - \hat{\phi}) = (\beta M_\alpha/2H_0) \sin 2\hat{\phi}.
\]

(2)

We note that in the ground state (\(M = \text{const.}\)) the magnetic interaction energy is equal to zero.*

We choose a system of coordinates in the following manner: with the \(z\) axis along the direction of the magnetic moment \(M_0\), and with the \(x\) axis in the plane of the vectors \(M_0\) and \(H_0\). Then the anisotropy energy \(\mathcal{K}_A\) has the form

\[
\mathcal{H}_A = \int \text{d}v \left[M_x \cos \hat{\phi} + M_z \sin \hat{\phi}^2 + M_y^2 \right].
\]

(3)

As regards the other terms in the Hamiltonian (1), their form, by virtue of invariance, is independent of the choice of the coordinate system.

In quantum theory, the projections of the magnetic moment must be treated as operators with the magnetic field. This is legitimate up to fields of order the magnitude of the magnetic moment in the ground state upon small and expand the integrand in the Hamiltonian

\[
M^+(r) M^+(r') - M^+ (r') M^+ (r) = 2g \hbar M \delta (r - r').
\]

(4)

where

\[
M^z = M_x \mp iM_y,
\]

(5)

and where \(g\) is the gyromagnetic ratio \((g > 0)\).

The commutation rule for the components of \(M(r)\) follows from the commutation rule for the components of the total moment,

\[
[M_\alpha, M_\beta] = -i g \hbar M_\beta.
\]

Following Holstein and Primakoff,\(^6\) we introduce operators \(a(r)\) and \(a^*(r)\) that satisfy the commutation rule

\[
a(r) a^*(r') - a^*(r') a(r) = \delta (r - r'),
\]

(6)

and we express in terms of them the operators \(M^+,\)

\[
M^+ = (2g \hbar M_\alpha)^{a^*} (1 - g \hbar a^* a/2M_\alpha)^{a},
\]

\[
M^- = (2g \hbar M_\alpha)^{a^*} (1 - g \hbar a^*/2M_\alpha)^{a},
\]

\[
M_z = M_0 - g \hbar a^* a.
\]

(7)

In the neighborhood of the ground state, \(M_z \approx M_0\), and \(M_x\) and \(M_y\) are much smaller than \(M_0\). We may therefore treat the operators \(a\) and \(a^*\) as small and expand the integrand in the Hamiltonian (1) in powers of \(a\) and \(a^*\). For finding the spectrum, we may limit ourselves to terms of the second order in \(a\) and \(a^*\) (the first-order terms drop out by virtue of the choice of the ground state).

After simple transformations we get \(\mathcal{K} = \mathcal{K}_0 + \mathcal{K}'\), where \(\mathcal{K}'\) contains the terms of third and higher orders in \(a\) and \(a^*\), and where

\[
\mathcal{H}_0 = (a^* \hat{A} a) + \frac{1}{2} (a \hat{B} a) + \frac{1}{2} (a^* \hat{B}^* a^*).\]

(8)

In the expression (8), the parentheses denote integration over the volume of the ferromagnetic, and the operators \(\hat{A}\) and \(\hat{B}\) are defined by the equations

\[
\hat{A} a (r) = \left[g \hbar H_0 \cos (\phi - \hat{\phi}) + \frac{1}{2} g \hbar M_\alpha (\cos 2\hat{\phi} + \cos^2 \hat{\phi}) \right] a (r)
\]

\[
- g \hbar M_\alpha \delta a \frac{\delta a (r)}{\delta x} - g \hbar M_\alpha \int \text{d}v' \left(\frac{3}{2} R^2 - R^2 \right) a (r').
\]

\[
\hat{B} a (r) = \frac{1}{2} g \hbar M_\alpha (\cos^2 \hat{\phi} - 1) a (r)
\]

\[
- \frac{3}{2} g \hbar M_\alpha \int \text{d}v' (R')^2 a (r').
\]

(9)

The finding of the spectrum is related, as is well known, to the diagonalization of the Hamiltonian (8). For this purpose it is convenient to go over to the equations of motion of the operators \(a^*\),

\[
\hat{a} = (i/\hbar) (\mathcal{H}_0 a - a \mathcal{H}_0)\]

(10)

By use of (8) and (6), we get from (10)

\[
\hat{a} = -(i/\hbar) (\hat{A} a + \hat{B} a^*).\]

(11)

Since Eqs. (11) are linear, and since the operators \(\hat{A}\) and \(\hat{B}\) have difference-dependent kernels, we may seek a solution of (11) in the form of a Fourier series

\[
a(r, t) = \sum_{\lambda} \left(u_\lambda (r) a_\lambda (t) + v_\lambda^* (r) a_\lambda^* (t) \right),\]

(12)

where

\[
u_\lambda (r) = u_\lambda e^{i\kappa \cdot r}, \quad \bar{v}_\lambda (r) = v_\lambda e^{i\kappa \cdot r},
\]

(13)

and the operators \(a_\lambda^*\) satisfy the commutation rules

\[
a_\lambda^* a_\mu = a_\mu^* a_\lambda = \delta_{\lambda \mu}.
\]

(14)

On substituting (12) in (11) and comparing coefficients of \(a_\lambda^*\) and \(a_\lambda^*\), we get

\[
\varepsilon_\lambda u_\lambda = A_\lambda u_\lambda + B_\lambda \bar{v}_\lambda, \quad \varepsilon_\lambda v_\lambda = A_\lambda v_\lambda + B_\lambda u_\lambda.
\]

(15)

Here

\[
A_\lambda = g \hbar H_0 \cos (\phi - \hat{\phi}) + \frac{1}{2} g \hbar M_\alpha (\cos 2\hat{\phi} + \cos^2 \hat{\phi})
\]

\[
+ g \hbar M_\alpha \delta a \frac{\delta a (r)}{\delta x} + 2 \pi g \hbar M_\alpha (k_\lambda^2 + k_\lambda^2) / k_\lambda^2,
\]

(16)

\[
B_\lambda = -\frac{1}{2} g \hbar M_\alpha \sin^2 \hat{\phi} + 2 \pi g \hbar M_\alpha (k_\lambda^2 + ik_\lambda^2) / k_\lambda^2.
\]
From Eqs. (15) we find
\[\psi_i = \sqrt{A_i^2 - |B_i|^2}. \]
(17)

The homogeneous equations (15) determine the values of \(u_\lambda \) and \(v_\lambda \) except for an arbitrary factor, whose value may be obtained from the normalization condition
\[|u_\lambda|^2 - |v_\lambda|^2 = 1/V, \]
(18)
where \(V \) is the volume of the ferromagnet. Condition (18) guarantees conformity to the commutation rules (14) and (6); it can be obtained by using the orthogonality relation for the solutions of the system (15):
\[\int (u_\lambda(r) u_\mu^*(r) - v_\lambda(r) v_\mu^*(r)) \, dr = 0, \quad (\lambda \neq \mu). \]
(19)

From (15) and (18) we have, except for a phase factor,
\[u_\lambda = \frac{1}{\sqrt{2V}} \left(A_\lambda + \epsilon_\lambda \right)^{1/2}, \quad v_\lambda = \frac{1}{\sqrt{2V}} \left(A_\lambda - \epsilon_\lambda \right)^{1/2}. \]
(20)

By use of the equations of motion (11), the Hamiltonian \(\mathfrak{H}_0 \) can be put into the following form:
\[\mathfrak{H}_0 = \left(i\hbar/2 \right) \left(\{a^*, a\} - \{\hat{a}^*, a\} \right). \]
(21)

On substituting \(a \) and \(a^* \) from the Fourier series (12), we get
\[\mathfrak{H}_0 = \sum_\lambda \psi_\lambda (n_\lambda + 1/2) + \mathcal{G}; \quad \mathcal{G} = - i/\hbar \sum_\lambda A_\lambda; \]
(22)

G is a constant, which may always be omitted in the Hamiltonian.

The quantities \(a_\lambda^* a_\lambda \), as is evident from (14) and (22), have the meaning of occupancy numbers \((n_\lambda) \) for spin waves. Thus
\[\mathfrak{H}_0 = \sum_\lambda \psi_\lambda (n_\lambda + 1/2). \]
(23)

where \(\psi_\lambda \) is determined by formulas (17) and (16).

We consider the limiting cases:

(1) Magnetic field \(H_0 \) parallel to the axis of easiest magnetization. Therefore \(\psi = 0 \), and
\[A_\lambda = g_\hbar (H_0 + \beta M_0) + g_\hbar M_0 \alpha_{ij} k_i k_j + 2 g_\hbar M_0 \sin^2 \theta_h, \]
\[B_\lambda = 2 g_\hbar M_0 \sin^2 \theta_h e^{i2\lambda}, \]
(24)

(\(\theta_h \) and \(\varphi_\lambda \) are the polar angles of the vector \(k_\lambda \): If we treat \(\alpha_{ij} \) as an isotropic tensor, \(\alpha_{ij} = a \delta_{ij} \), we arrive at the well known spectrum.\(^2\) Here the quantity \(M_0 \) plays the role of a magnetic anisotropy field. However, in the general case (\(B_\lambda \) not parallel to the axis of easiest magnetization), the magnetic anisotropy density cannot be expressed in the form \(-M H_\lambda \), since the constant \(\beta \) enters in a different way in the expression for \(A_\lambda \) and \(B_\lambda \) [cf. (16)].

(2) For large \(k_\lambda \) (\(\alpha_{ij} k_\lambda k_j \gg 1 \)), \(A_\lambda \gg |B_\lambda| \), and
\[\psi_\lambda \approx A_\lambda \approx g_\hbar H_0 + g_\hbar M_0 \alpha_{ij} k_i k_j. \]
(25)

(We recall that \(\beta \sim 1 \).)

(3) For small \(k_\lambda \) (\(\alpha_{ij} k_\lambda k_j \ll 1 \)), \(A_\lambda \) and \(B_\lambda \) are of the same order of magnitude. In this case the expressions for \(A_\lambda \) and \(B_\lambda \) do not simplify.

2. INTERACTION OF SPIN WAVES WITH EACH OTHER

In the processes of interaction of spin waves with each other, a fundamental role is played by the terms of third and fourth order with respect to the operators \(a \) and \(a^* \). The third-order terms arise from expansion of the anisotropic relativistic terms in the Hamiltonian (1) (anisotropy energy and magnetic interaction energy):
\[\mathfrak{H}_a = - \frac{1}{4} (2 g_\hbar M_0)^2 \beta g_\hbar \sin 2\varphi \int (a^* a) a^* a \, dv. \]
(26)

\[- \frac{3}{2} (2 g_\hbar M_0)^2 \beta g_\hbar \int \frac{R_x R_y}{\hbar^2} (a^* a) (a^* a) \, dv. \]
(27)

(\(\varphi \) denotes the complex conjugate terms).

The fourth-order terms arise from expansion of the exchange interaction energy
\[\mathfrak{H}_\text{exch} = \frac{(g\hbar)^2}{4} \int [\mathcal{V}(a^* a) - \mathcal{V} a^* a] \, dv. \]
(26')

(a) We consider first the terms of third order. Henceforth we shall suppose that the magnetic field is applied in the direction of the axis of easiest magnetization.\(^\dagger\) Therefore \(\psi = 0 \), and
\[\mathfrak{H}_a = - \frac{3}{2} (2 g_\hbar M_0)^2 g_\hbar \int \frac{R_x R_y}{\hbar^2} (a^* a) (a^* a) \, dv. \]
(27)

On substituting in (27) the expansion (12) of the operators \(a \) and \(a^* \), we get
\[* \]
\[This\ corresponds\ to a temperature \(T \gg 2m_0 M_0 \sim 1^0 \text{K}. \]

\[\dagger \]
\[In\ the\ general\ case\ (\psi \neq 0),\ the\ terms\ related\ to\ the\ anisotropic\ energy\ do\ not\ change\ the\ magnitude\ of\ the\ relaxation\ time\ to\ any\ essential\ degree,\ since\ the\ structure\ of\ the\ first\ term\ in\ (26)\ is\ similar\ to\ that\ of\ the\ second\ and\ since\ the\ coefficient\ \beta \sim 1. \]
where

\[\Phi_{\lambda\nu} = -2\pi g^2 (2g^2 M_0)^2 \left[\frac{k^2}{k_0^2} \right] V \left(v_x u_x + v_y u_y \right) \]

and where the sum extends over all wave vectors \(k_\lambda, k_\mu, \) and \(k_\nu \) satisfying the law of conservation of quasi-momentum

\[k_\lambda + k_\mu = k_\nu. \]

We do not consider transfer processes, since they play no role in the problems being solved here.

We may consider the Hamiltonian (28) as a perturbation that causes transitions between stationary states of the system of spin waves.

The probability of transition (per second) is, as is well known,

\[W_{ij} = (2\pi/\hbar) |\mathcal{H}_{ij}|^2 \delta(E_i - E_j), \]

where \(\mathcal{H}_{ij} \) is the matrix element for a transition from the initial state \((i)\) to the final state \((f)\), and \(E_i (E_f) \) is the energy of the initial (final) state.

According to the commutation rule (14), the nonvanishing matrix elements of the operators \(\hat{a}_\lambda \) and \(\hat{a}_\lambda^* \) are

\[(a_\lambda)_n_{n+1} = \sqrt{n_\lambda + 1} e^{-i\lambda \xi / \hbar}; \]

\[(a_\lambda^*)_n_{n+1} = \sqrt{n_\lambda} e^{i\lambda \xi / \hbar}. \]

Therefore, according to (28), the nonvanishing matrix elements of the operator \(\mathcal{H} \) are the following:

\[(\mathcal{H})_{n_{n+1}}^{n_{n+1}} = \ldots \]

\[\text{together with the matrix elements of the opposite transitions.} \]

The corresponding transition probabilities have the form:

\[W_{n_{n+1}}^{n_{n+1}} = \frac{2\pi}{\hbar} A_{\lambda\mu\nu} \delta (n_{\lambda} + 1) \delta (n_{\mu} + 1) \delta (n_{\nu} + 1); \]

\[W_{n_{n+1}}^{n_{n+1}} = \frac{2\pi}{\hbar} A_{\lambda\mu\nu} (n_{\lambda} + 1) n_{\mu} (n_{\nu} + 1) \times \delta (s_x - s_\mu - s_x); \]

\[W_{n_{n+1}}^{n_{n+1}} = \frac{2\pi}{\hbar} A_{\lambda\mu\nu} (n_{\lambda} + 1) n_{\mu} (n_{\nu} + 1) \times \delta (s_\mu - s_\mu - s_x). \]

Here

\[A_{\lambda\mu\nu} = |\Phi_{\lambda\mu\nu} + \Phi_{\lambda\mu\nu}|^2. \]

Using the expressions obtained for the transition probabilities, we write the collision integral for \(n_\nu \):

\[\dot{n}_\nu = \frac{2\pi}{\hbar} \sum_{\lambda\mu} [A_{\lambda\mu\nu} n_\lambda n_\mu (n_\nu + 1) \]

\[- (n_\lambda + 1) n_\lambda n_\mu] \delta (s_x - s_\mu - s_x) \]

\[+ A_{\lambda\mu\nu} (n_\lambda + 1) n_\lambda n_\mu - n_\lambda (n_\mu + 1) n_\mu] \delta (s_\mu - s_\mu - s_x) \]

\[+ A_{\lambda\mu\nu} [n_\lambda (n_\mu + 1) (n_\nu + 1) - (n_\lambda + 1) n_\mu n_\nu] \delta (s_\lambda - s_\mu - s_x). \]

We shall calculate the mean relaxation time of a gas of spin waves with the processes under consideration taken into account.

For small deviations of the system from the state of statistical equilibrium, the mean occupancy numbers \(n_\nu \) can be expressed in the form

\[n_\nu = n_\nu^0 + \Delta n_\nu, \quad n_\nu^0 = 1 / (e^{\beta \epsilon_{\nu} / T} - 1), \]

where \(\Delta n_\nu \) is a small correction to the Bose equilibrium distribution.

Upon substituting (35) in (34), we shall limit ourselves to linear terms in the expansion with respect to the correction to the equilibrium distribution function.

The coefficient of \(\Delta n_\nu \) in the linearized collision integral, averaged over all the equilibrium states, may be regarded as the reciprocal of the mean relaxation time. After simple transformations we get

\[\frac{1}{\tau} = \frac{2\pi}{\hbar} \sum_{\lambda\mu\nu} (n_\lambda + 2n_\mu n_\nu) \delta (s_\lambda - s_\mu - s_x) A_{\lambda\mu\nu} / \sum_{\nu} n_\nu^0, \]

where \(A_{\lambda\mu\nu} \) is determined by formulas (33), (29), (20), (16), and (17).

We consider first the case of high temperatures, \(T > 2\pi M_0 Q \). As was pointed out in Sec. 1, under these conditions the spectrum is considerably simplified. If we suppose that \(\alpha_{ik} = \alpha \delta_{ik} = (\Theta C a^2 / \mu M_0) \times \delta_{ik} \), then

\[s_x = \mu H_{\text{eff}} + \Theta (ne)^{3/2}. \]

Here \(H_{\text{eff}} = H_0 + \beta M_0 \). In this approximation

\[u_x = 1 / \sqrt{V}; \quad v_\lambda = 0. \]

From (33), (29), and (38), we get

\[A_{\lambda\mu\nu} = \frac{(2\pi M_0)^2 \mu M_0}{V} \left(\frac{k^2}{k_0^2} \right)^2 \left(\frac{k^2}{k_0^2} \right)^2 \left(\frac{k^2}{k_0^2} \right)^2. \]

In expression (36) we go over from summation to integration; after integrating over angles and
PHENOMENOLOGICAL THEORY OF KINETIC PROCESSES

changing to dimensionless variables, we get
\[\frac{1}{\tau_a} = \frac{\pi}{3} gM_0 \mu^2 a^3 v_r \left(\frac{T}{\Theta} \right)^{\gamma} F(\eta), \]
(40)
where
\[F(\eta) = \sum_{\mu > \nu} \left\{ \frac{1}{1 + (\mu^2 - 1 + (\nu^2 - 1) (\nu^2 - 1))} \right\} \times \frac{1}{\eta^2} \int_0^1 x^2 dx dy \sum_{\mu > \nu} \frac{x^2 dx}{1 + (\mu^2 - 1 + (\nu^2 - 1))}, \]
(41)
\[\eta = \mu H_{\text{eff}} / 2T. \]
(42)

On calculating the asymptotic behavior of the function \(F(\eta) \), we get
\[F(\eta) = \left\{ \begin{array}{ll}
\frac{(2/3^3)}{\ln^2 \eta} & (\eta \ll 1), \\
\frac{1}{2 \sqrt{\pi \eta}} & (\eta \gg 1).
\end{array} \right. \]
(43)
Thus for \(\Theta_C \gg T \gg 2\pi \mu M_0 \):\]
\[\frac{1}{\tau_a} = \left\{ \begin{array}{ll}
\frac{2\pi}{5} gM_0 \mu^2 a^3 \left(\frac{T}{\Theta} \right)^{\gamma} \ln^2 \left(\frac{\mu H_{\text{eff}}}{2T} \right) & (\mu H_{\text{eff}} \ll T), \\
\frac{1}{\pi \sqrt{\Theta_C}} & (\mu H_{\text{eff}} \gg T).
\end{array} \right. \]
(44)

It should be noticed that at strong magnetic fields, the relaxation time slowly decreases with increase of the field \((\tau_a \sim H^{-1/2}) \) but is independent of temperature. The relaxation time at small fields agrees in order of magnitude with the result obtained by Akhiezer,\(^1\) if we suppose that \(M_0 \approx \mu a^3 \) and if we set \(\mu H_{\text{eff}} \) equal to \(\mu^2 a^3 / 3 \).

In the case of low temperatures \((T < 2\pi \mu M_0) \), the fundamental role in the expression (16) is played by the term related to the magnetic interaction of the spins.\(^*\) Therefore for small \(k_\lambda, A_\lambda \) and \(|B_\lambda| \gg \varepsilon \lambda \). On taking account of this, we get from (33), (29), and (20)
\[A_{\lambda \mu} = \frac{\pi \mu M_0}{2 \varepsilon_1 \varepsilon_2} \sin 2\theta_2 \cos (\phi_\mu - \phi_\nu) \]
\[+ \varepsilon_1 \sqrt{\frac{A_\lambda A_\mu}{A_\mu}} \sin 2\theta_2 \cos (\phi_\mu - \phi_\nu) \]
\[- \varepsilon_2 \sqrt{\frac{A_\lambda A_\mu}{A_\lambda}} \sin 2\theta_2 \cos (\phi_\mu - \phi_\nu) \]
(45)

If in the dispersion law we limit ourselves to the lowest power of \(k_\lambda \), then
\[\varepsilon_2 = \sqrt{\frac{4 \pi M_0 \mu^2 a^3}{3}} \sin \theta_1. \]

Under these conditions, however, simultaneous fulfillment of the laws of conservation of energy and of momentum leads to a divergence of the integral in the expression for \(1/\tau_a \) to the extent of a delta function. On the other hand, \(A_{\lambda \mu \nu} \) approaches zero. Therefore in the calculation of the relaxation time, it is necessary to take account, in the spectrum, of further terms in the expansion with respect to \(k_\lambda \) \((\sim k_\lambda^3) \).

After rather tedious calculations we get, except for a numerical factor:
\[1 / \tau_a = \frac{gM_0 (T / \Theta)}{\mu \mu M_0}, \quad (T < 2\pi \mu M_0). \]
(46)

Thus, according to (44) and (46),
\[\tau_a \sim \frac{T^{-\gamma} \ln T}{T} \left(\frac{2\pi \mu M_0}{\Theta} \right). \]
(47)

(b) We now calculate the relaxation time with the exchange interaction taken into account.

From (26') we have, for \(T > 2\pi \mu M_0 \), \((T < 2\pi \mu M_0 \) the exchange interaction is quite unimportant for kinetic processes),
\[\mathcal{H}_{\text{exch}} = \sum_{n \neq m} \Phi_{n,m} \varphi_n \varphi_m, \quad (k_\mu + k_\lambda = k_\mu + k_\lambda). \]
(48)
where
\[\Phi_{n,m} = \frac{(\mu^2 a / 4V) (2k_\mu + (k_\mu + k_\lambda) (k_\mu + k_\lambda)). \]
(49)

Hence the transition probabilities, which correspond to nonvanishing matrix elements of \(\mathcal{H}_{\text{exch}} \), have the form
\[a_{n,m} a_{n,m} = \frac{2\pi}{N} \left(A_{k \mu \nu} + A_{k \mu \nu} \right) a_{n,m} a_{n,m} (n_\mu + 1) \]
\[\times (n_\nu + 1) \delta (s_\mu + s_\nu - s_\mu - s_\nu), \]
\[a_{n,m} a_{n,m} = \frac{2\pi}{N} A_{k \mu \nu} a_{n,m} (n_\mu + 1) \]
\[\times (n_\nu + 1) \delta (s_\mu - s_\nu - s_\mu + s_\nu), \]
\[a_{n,m} a_{n,m} = \frac{2\pi}{N} A_{k \mu \nu} (n_\mu + 1) a_{n,m} \]
\[\times (n_\nu + 1) \delta (s_\mu + s_\nu - s_\mu + s_\nu). \]
(50)

Here
\[A_{k \mu \nu} = |\Phi_{n,m} + \Phi_{k \mu \nu}|^2. \]
(51)

With the aid of the collision integral corresponding to these transition probabilities, we find the relaxation time in the same manner as before:
\[\frac{1}{\tau_{\text{exch}}} = \frac{2\pi}{N} \sum_{n \neq m} A_{k \mu \nu} \left(n_n^2 n_m^2 (n_n^2 + n_m^2 + 2) \right) \delta (s_\mu + s_\nu - s_\mu - s_\nu) / \sum_n n_n^2. \]
(52)

On substituting the value of \(A_{k \lambda \mu \nu} \) and going over

*At low temperatures the whole treatment is carried out in the absence of a magnetic field. Furthermore it is assumed that \(\beta \ll 2\pi \). This permits neglect of the anisotropy energy in (16).
from summation to integration, we get except for a numerical factor

$$\frac{1}{\tau_{\text{exch}}} \sim \frac{(\Theta_e)}{k}(T/\Theta_c)^4. \quad (53)$$

By comparison of this expression for $1/\tau_{\text{exch}}$ with $1/\tau_a \sim gM_0 (\mu M_0/\Theta_c) (T/\Theta_c)^{1/2}$ [cf. formula (44)], we conclude that for

$$T \gg \mu M_0 (\Theta_e/\mu M_0)^{3/2}, \quad \tau_{\text{exch}} \ll \tau_a,$$

and that for

$$T \ll \mu M_0 (\Theta_e/\mu M_0)^{3/2}, \quad \tau_{\text{exch}} \gg \tau_a.$$

This means that for $T \gg \mu M_0 (\Theta_e/\mu M_0)^{3/2} \sim 10$ to 30°K, the relaxation of a spin-wave gas occurs in the following manner: in a time $t = \tau_{\text{exch}}$, the spin waves reach a quasiequilibrium state with a nonequilibrium value of the magnetic moment;* thereafter, the magnetic moment "slowly" (in a time τ_a) relaxes to its equilibrium value. For $T \ll \mu M_0 \times (\Theta_e/\mu M_0)^{3/2}$, the nonequilibrium state of the spin system cannot be described as having a definite value of the moment.

It must further be remembered that for $T \gg \Theta^2/\Theta_c$ ($\Theta = $ Debye temperature), a fundamental role is played by processes of interaction of the spin waves with phonons. These processes will be treated from the phenomenological point of view in a separate article.

*This is a consequence of the fact that the exchange interaction does not change the magnetic moment of the system.

The authors take this opportunity to thank A. I. Akhiezer, L. D. Landau, and I. M. Lifshitz for valuable suggestions, and also V. G. Bar’ialkhtar and S. V. Peletminskii for helpful discussions.